Русский ученый изучавший физиологию нервной системы. Этапы развития физиологии. Вклад отечественных ученых в развитие физиологической науки. История развития физиологии

Реферат

по дисциплине «Анатомия»

Основные современные пути развития анатомии.

Киевская анатомическая школа.

Значение научных достижений для развития анатомии человека»

Выполнила:

студентка 1 курса

группы 11 ф/л

Лапикова Марина

г. Ялта, 2012

Ученые, внесшие вклад в изучение анатомии, физиологии и медицины ……………………………………………………….2

Основные современные пути развития анатомии……………..7

Киевская анатомическая школа…………………………………11

Связь анатомии и физиологии с другими науками, изучающими человека……………………………………………………………13

Значение для человека знаний о строении и функциях его организма…………………………………………………………..14

Список использованной литературы……………………………..16

Ученые, внесшие вклад в изучение анатомии, физиологии и медицины

· Гиппократ (около 460 до н.э., остров Кос - 377 до н.э.)

Древнегреческий врач, естествоиспытатель, философ, реформатор античной медицины.

В трудах Гиппократа, ставших основой дальнейшего развития клинической медицины, отражены представление о целостности организма; индивидуальный подход к больному и его лечению; понятие об анамнезе; учения об этиологии, прогнозе, темпераментах.

· Аристотель (384 до н. э., Стагир - 322 до н. э.)

- древнегреческий философ. Ввел название «аорта». Аристотель отметил общие черты сходства человека и животного, заложил основы описательной и сравнительной анатомии.

· Клавдий Гален (129 или 131- около 200)

- античный медик. Описал около 300 мышц человека. Доказал, что не сердце, а головной и спинной мозг являются «средоточием движения, чувствительности и душевной деятельности». Сделал вывод, что «без нерва нет ни одной части тела, ни одного движения, называемого произвольным, ни единого чувства». Перерезав спинной мозг поперёк, Гален показал исчезновение чувствительности всех частей тела, лежащих ниже места разреза. Доказал, что по артериям движется кровь, а не «пневма», как считалось ранее.

Создал около 400 трудов по философии, медицине и фармакологии, из которых до нас дошло около сотни. Собрал и классифицировал сведения по медицине, фармации, анатомии, физиологии и фармакологии, накопленные античной наукой.

Описал четверохолмие среднего мозга, семь пар черепномозговых нервов, блуждающий нерв; проводя опыты по перерезке спинного мозга свиней продемонстрировал функциональное различие между передними (двигательными) и задними (чувствительными) корешками спинного мозга.

· Парацельс (1499 – 1541 гг)

Знаменитый врач. Средневековой медицине, в основе которой лежали теории Аристотеля, Галена и Авиценны, он противопоставил «спагирическую» медицину, созданную на базе учения Гиппократа. Он учил, что живые организмы состоят из тех же ртути, серы, солей и ряда других веществ, которые образуют все прочие тела природы; когда человек здоров, эти вещества находятся в равновесии друг с другом; болезнь означает преобладание или, наоборот, недостаток одного из них. Одним из первых начал применять в лечении химические средства.

Парацельса считают предтечей современной фармакологии, ему принадлежит фраза: «Всё есть яд, и ничто не лишено ядовитости; одна лишь доза делает яд незаметным».

· Андреас Везалий (1514 – 1654 гг)

- итальянский естествоиспытатель. Убедившись в том, что многие анатомические тексты Галена, известного римского врача (ок. 130–200 н.э.), основаны на результатах вскрытий животных и, следовательно, не отражают специфики анатомии человека, Везалий решил предпринять экспериментальные исследования человеческого тела. Изучая труды Галена и его взгляды на строение человеческого тела, Везалий исправил свыше 200 ошибок канонизированного античного автора. Итогом стал трактат О строении человеческого тела (De humani corporis fabrica, 1543).

· Уильям Гарвей (1578 – 1657 гг)

- английский медик, основоположник физиологии и эмбриологии. Организовал публичную лекцию в Лондоне. В этой лекции он впервые изложил свое видение систем кровообращения в организме человека, а также других теплокровных животных, провел ряд опытов и экспериментов, которые позволили ему сделать ряд наблюдений. Он вычислил, что кровь движется по кругу, вернее, по двум кругам: малому – через легкие и большому – через все тело.

· Луиджи Гальвани (1787 – 1796 гг)

- итальянский врач, анатом, физиолог и физик, один из основателей электрофизиологии. Первым исследовал электрические явления при мышечном сокращении («животное электричество»).

· Луи Пастер (1822 – 1895 гг)

- французский микробиолог и химик. Пастер, показав микробиологическую сущность брожения и многих болезней человека, стал одним из основоположников микробиологии и иммунологии.

· Пирогов Николай Иванович (1810 – 1881 гг)

- русский хирург и анатом, естествоиспытатель и педагог. Основное значение всей деятельности Пирогова состоит в том, что своим самоотверженным и часто бескорыстным трудом он превратил хирургию в науку, вооружив врачей научно обоснованной методикой оперативного вмешательства.



· Сеченов Иван Михайлович (1829 -1905 гг)

Выдающийся русский физиолог, учёный-энциклопедист, патологоанатом, гистолог, токсиколог, психолог, культуролог, антрополог, естествоиспытатель, химик, физико-химик, физик, биохимик, эволюционист, приборостроитель, военный инженер, педагог, публицист, гуманист, просветитель, философ и мыслитель-рационалист, создатель физиологической школы

· Мечников Илья Ильич (1845 -1916 гг)

- российский и французский биолог (зоолог, эмбриолог, иммунолог, физиолог и патолог). Один из основоположников эволюционной эмбриологии, первооткрыватель фагоцитоза и внутриклеточного пищеварения, создатель сравнительной патологии воспаления, фагоцитарной теории иммунитета, основатель научной геронтологии. Лауреат Нобелевской премии в области физиологии и медицины (1908).

· Палов Иван Петрович (1849 – 1936 гг)

- один из авторитетнейших учёных России, физиолог, психолог, создатель науки о высшей нервной деятельности и представлений о процессах регуляции пищеварения; основатель крупнейшей российской физиологической школы; лауреат Нобелевской премии в области медицины и физиологии 1904 года «за работу по физиологии пищеварения».

· Боткин Сергей Петрович (1832 – 1889 гг)

Русский врач-терапевт и общественный деятель, создал учение об организме как о едином целом, подчиняющемся воле.

· Ухтомский Алексей Алексеевич (1875 – 1942 гг)

- российский и советский физиолог. Главным открытием Ухтомского принято считать разработанный им принцип доминанты - теорию, способную объяснить некоторые фундаментальные аспекты поведения и психических процессов человека. Принцип доминанты описан им в работе «Доминанта как рабочий принцип нервных центров» и в других научных трудах. Этот принцип явился развитием идей Н. Е. Введенского.

· Бурденко Николай Нилович (1876 – 1946 гг)

- русский и советский хирург, организатор здравоохранения, основоположник российской нейрохирургии. Николай Бурденко создал школу хирургов экспериментального направления, разработал методы лечения онкологии центральной и вегетативной нервной системы, патологии ликворообращения, мозгового кровообращения и др. Производил операции по лечению мозговых опухолей, которые до Бурденко насчитывались во всем мире единицами. Он впервые разработал более простые и оригинальные методы проведения этих операций, сделав их массовыми, разработал операции на твёрдой оболочке спинного мозга, производил пересадку участков нервов. Разработал бульботомию - операцию в верхнем отделе спинного мозга по рассечению перевозбуждённых в результате травмы мозга проводящих нервных путей.



Характеристика основных физиологических свойств возбудимых тканей. Понятие об ионной ассиметрии.

Нервная ткань обладает возбудимостью. Функции возбудимой ткани базируются на 2 основных свойствах: 1-несимметричного расположения потенциалобразующих ионов по отношению к мембране;2- избирательная проницаемость клеточной мембраны. Ионная асимметрия: основными потенциалобразующими ионами яв-ся К и Na. В некоторых тканях таковыми являются Са и CL. Na больше вне клетки, а К- в клетке. Данные ионы стремятся перемещаться через мембрану.Na стремится войти в клетку вдоль конц.градиента, а К выйти вдоль конц.градиента. конц.градиент для Na и Kсохраняют свое направление всегда, и в состоянии покоя, и в состоянии раздражения. 2 .избират.проницаемость мембраны: мембрана возбудимых тканей образована 2 слоем фосфолипидов, пронизанными ионными каналами. Ионные каналы- интегральные белки мембраны, в ряде случаев обладающие воротным механизмом- канал может быть открытым и закрытым. Р группа обращена к воде, гидрофильна. Жирные кислоты липофильны и обращены друг к другу. Проницаемость Na-канала зависит от функц-го состояния возбудимой ткани:1-покой- каналы закрыты; 2- при действии раздражителя канал на короткое время открывается. К-каналы всегда открыты в независимости от функц-го состояния возбудимой ткани. Время от времени мембрану пронизывают другие белки- натрий-калиевые насосы. У этих белков имеется 3 центра связывания: для натрия, калия, и АТФ.

Строение скелетной мышцы

состоят из мышечных волокон, каждое мышечное волокно сост.миофибрилл. миофибриллы имеют выраженную полосатую исчерченность. В ней правильно чередуются светлые и темные участки. Темные участки обозначаются как диск А-анизотропные(разные), т.к. они имеют разную оптическую плотность. Светлые участки-дискI-изотропные- имеют одинаковую оптическую плотность. В составе темного участка имеются светлые- зона Н.миофибрилла состоит из более тонких филаментов- протофибрилл. Протофибриллы- сократимые белки мышцы. В мышцах имеются 2 типа протофибрилл- актин и миозин. Актин- белок полимер, имеет конформацию 2нитчатой спирали, время от времени перекрученные. Мономером является глобулярный белок. Длина 1мкм, диаметр 7-7нм. В местах соединения 2 нитей имеются углубления- канавки. В молекулу актина встроены 2 регуляторных белкатропонин и тропомиозин. Миозин-белок полимер, состоит из множестваполипептидных цепей. В составе каждой цепи различают: головку, шейку и хвост. Хвосты всех цепей скручены в виде жгута. Головки располагаются на поверхности этого каната, а между хвостом и головкой располагается подвижная шейка.миозин длиннее и толще актина: длина-1,5мкм, диаметр-14нм. О теории: структуры были изучены хансон и хаскли. Удостоены нобелевской премии в 1962г.. суть теории: при возбуждении мышцы миозин начинает взаимодействовать с актином. Находясь в центре саркомера, миозин шаг за шагом, изменяя положение головки, подтягивает молекулы актина и справа и слева к центру. При этом длина саркомера уменьшается, соответственно уменьшается длина миофибриллы, длина мыш.волокна, но длина актина и миозина не изм-ся.



Механизм мыш.сокращ-ия: медиатор из нервного окончания выделяется на мышцу. В мышце в районе синапса возникает ПД. Деполяризация распространяется вдоль мышечного волокна. Цистерны СПР контактируют с мембраной, поэтому деполяризация мембраны мышечного волокна вызывает изменение проницаемости мембраны СПР: в мембране СПР открываются Са-каналы. Са выходит из цистерн и заполняет пространство с миофибриллой. Сасвязыватся с Са-чувствительными центрами тропонина. Конформациятропонина изменяется.Троонин перестает удерживать электростатическитропомиозин на поверхности актина. Молекулы тропомиозина сваливаются в канавку, открывая центры связывания актина с миозином. Головкка миозина располагается под прямым углом по отношению к актину. На этих головках сейчас АДФ и фосфат. Головки миозина связываются с активными центрами актина. Связь актина и миозина несколько изменяет конформацию миозина, в результате чего фосфаты отсоединяются от головки миозина. Отсоединение вызывает существенное конформационное изменение миозина: происодит переориентация шейки миозина по отношению к головке. Шейки наклоняются к продольной оси миозина. В результате возникает тянущее усилие. Мышца миозин совершает гребковое движение. По завершении движения от головки миозина отсоединяется и АДФ. Утратив АДФ и фосфат, головка прочно связывается с актином. Для того, чтобы отсоединить головку миозина от актина, с головкой миозина связывается АТФ. Конформация головки изменяется, вследствие чего сродство актина и миозина резко снижается. Головка миозина отсоединяетя от актина. Сразу же после этого миозин приобретает атефазную активность и подвергает гидролизу АТФ. Выделяется энергия. Энергия расходуется на разгибание головки миозина.

Газообмен в капиллярах малого круга. Значение рО2 и рСО2 в венозной крови и в легких. Механизмы освобождения СО2 из соединений, в виде которых этот оксид транспортируется кровью. Понятие о кислородной емкости крови.

Газообмен - это транскапиллярный обмен дыхательных газов (СО2 и О2). Осуществляется между венозной кровью и воздухом альвеол, в малом кругу кровообращения, и между артериальной кровью и тканями в большом кругу кровообращения.

Газообмен в капиллярах малого круга.

Значение рО2 и рСО2 в

В легких: Тканях:

рО2 = 103 mmHgpO2 = 40 mmHg

pCO2 = 40 mm Hg pCO2 = 46 mmHg

1. Разрушить соединения, в виде которых СО2 транспортируется в кровь и вывести их.

2. Оксигенировать кровь

1) HHbCO2 – диссоциирует по градиенту давления:

HHbCO2 àHHb + CO2

2) Чем больше Hb сбрасывает СО2, тем легче он связывается с О2 по градиенту давления:

HHb + O2 = HHbO2

В эритроците сейчас находятся следующие вещества:

KHCO3 иHHbO2, которые взаимодействуют друг с другом:

KHCO3 + HHbO2-àKHbO2 + H2CO3

Под действием карбоангидразы:

H2CO3 -àCO2 + H2O

К этому времени мы освободились от двух соединений, транспортируемых СО2 (HHbCO2 иKHCO3)

Нам осталось освободится от NaHCO3 находящийся в плазме крови.

В МКК Н2СО3 ферментативно расщепляется на H2OиCO2, а не спонтанно диссоциирует на Н+ и НСО3-

В малом кругу в крови практически нет иона бикарбоната, поэтому НСО3- дифундирует из плазмы крови в эритроците. В эритроците НСО3- связывается с протоном Н+ чуть –чуть подкисливая кровь образуется Н2СО3 – расщепляется на Н2О и СО2:

HCO3- + H+ àH2CO3 àH2O + CO2

Итак, все три соединения в виде которых СО2 транспортируется в МКК. Это:

KHCO3 – в эритроците

NaHCO3 – в плазме

HHbCO3 – в эритроците

Кислородная емкость крови _ это количество мл О2 транспортируется кровью

КЕК ограниченна содержанием Нb

Hb – 14,2% - количество грНb 100 ml

1 грHb может связываться с 1,34 мл О2 – коэффициент Хюффнера

КЕК = 1,34 * 14=19 об.%

Объемный % - количество мл газов, содержащихся в 100 мл крови.

Этапы развития физиологии. Вклад отечественных ученых в развитие физиологической науки

Год становления физиологии - 1628 г. - вышла книга английского анатома и физиолога У. Гарвея "Учение о движении сердца и крови в организме" - впервые описан большой круг кровообращения. Периоды физиологии:допавловский - 1628-1883 г.; павловский - с 1883 г. - диссертация И. Павлова "Центробежные нервы сердца". Павловский этап базируется на трех основных принципах - организм - это единая система, которая объединяет:различные органы в их сложном взаимодействии между собой, организм - единое целое с окружающей средой; принцип нервизма.Из русских ученых, работающих в XIX веке в области физиологии, следует отметить А. М. Филомафитского, В. А. Басова, Н. А. Миславского, Ф. В. Овсянникова, А. Я. Кулябко, С. П. Боткина и др. Одним из них принадлежат открытия в области физиологии крови и кровообращения, другие изучали функции пищеварения, третьи - дыхания, нервной системы и т. д. Особую роль в области физиологии сыграли ученые И. М. Сеченов и И. П. Павлов.Иван Михайлович Сеченов (1829 - 1905) - основоположник русской физиологии. И. М. Сеченов открыл явления торможения в центральной нервной системе, впервые изучил состав газов крови, выяснил роль и значение гемоглобина в переносе углекислого газа и т. д. Исключительное значение имела книга И. М. Сеченова "Рефлексы головного мозга", вышедшая в 1863 г. В ней впервые высказано положение, что вся деятельность головного мозга носит рефлекторный характер.Иван Петрович Павлов (1849 - 1936) - великий ученый-материалист. Основные труды его посвящены физиологии кровообращения, пищеварения и больших полушарий головного мозга. Исследования И. П. Павлова в области физиологии кровообращения привели к созданию учения о регуляции деятельности сердечно-сосудистой системы. И. П. Павлов установил, что деятельность различных органов пищеварительной системы регулируется нервной системой и зависит от различных явлений внешней среды.В трудах И. П. Павлова нашла блестящее подтверждение высказанная И. М. Сеченовым мысль о рефлекторном характере деятельности органов. Различные раздражения из внешней среды, которые оказывают действие на организм, воспринимаются посредством нервной системы и вызывают изменение деятельности тех или иных органов. Такие ответные реакции организма на раздражение, осуществляемые через нервную систему, носят название рефлексов.Особое значение имеют исследования И. П. Павлова, посвященные изучению функций коры головного мозга. Этими исследованиями было показано, что в основе психической деятельности человека лежат физиологические процессы, протекающие в коре головного мозга.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Вклад отечественных ученых в развитие физиологии растений

1. Современные направления раз вития физиологии растений

Физиология растений -- одна из молодых отраслей биологии. Возникновение ее можно отнести к концу XVIII -- началу XIX в. Ф. р. развивалась первоначально как составная часть ботаники, занимающаяся преимущественно проблемой почвенного питания растений. Голландский естествоиспытатель Ян ван Гельмонт (1629) экспериментально решал вопрос о том, за счёт чего строят свои ткани растения и пришёл к ошибочному с современной точки зрения заключению, что основной источник питания растения не почва, а вода. Его опыты имели большое значение для изучения растений, т.к. он впервые применил количественный метод - взвешивание.

В конце 17 в. было установлено наличие у растений пола.

В 1727 англичанин С. Гейлс обнаружил передвижение веществ и воды по тканям растения. Впервые идею о воздушном питании растений высказал в 1753 М. В. Ломоносов, который отметил, что деревья, растущие на бедном питательном веществами песке, не могут получить через корни необходимого количества питательных веществ, и сделал вывод, что растения получают питание через листья из воздуха.

Важнейшую роль в последующем развитии Ф. р. и всего естествознания в целом сыграло открытие англ. химика Джозефа Пристли, который установил, что зелёные растения в ходе своей жизнедеятельности изменяют состав воздуха, возвращают ему способность поддерживать горение и сохранять жизнь животных (1771). Это явление получило в дальнейшем название фотосинтеза.

В это время начали складываться представления о фотосинтезе как процессе усвоения солнечной энергии зеленым растением, нашедшие более или менее законченное выражение в труде швейцских учёных Ж. Сенебье и Н. Т. Соссюра (конца 18 - начала 19 вв.), голландского естествоиспытателя Я. Ингенхауза (1779). Пятитомная «Физиология растений» Сенебье, появившаяся в 90-х годах XVIII в., была попыткой охватить, весь известный тогда материал наблюдений и опытов как содержание единой научной дисциплины. Позднее немецкий учёный Ю. Р. Майер, французский агрохимик Ж. Б. Буссенго (1868) и др. расшифровали отдельные стороны фотосинтеза, как процесса усвоения углекислого газа и воды, происходящего с выделением кислорода при обязательном участии света, показали зависимость фотосинтеза от света и установили связь между поглощением углекислоты и выделением кислорода у растений в процессе дыхания.

Большое влияние на развитие Ф. р. оказали работы французского учёного А. Лавуазье по химии горения и окисления (1774-84). Открытия А. Лавуазье и установление им замечательной аналогии, дыхания -- горения создавали основу для трактовки важнейшего жизненного процесса как превращения вещества и энергии. Наконец, на рубеже XIX в. английским ботаником Т.Э.Найтом сделано одно из наиболее важных открытий в физиологии растений. В смелых по замыслу и изумительных по простоте проведения опытах он показал, что направление роста растительных органов определяется механическим действием поля земного тяготения. Этим было положено начало экспериментальному изучению роста и формообразования растений.

В начале 19 в. были описаны ростовые движения у растений - тропизмы, которые позднее детально исследовал Ч. Дарвин. Особенно бурно развивались работы в области почвенного питания растения. Немецкий учёный А. Тэер сформулировал гумусовую теорию (1810-19), в которой решающую роль в питании растений отводил органическому веществу почвы. В 40-х гг. 19 в. на смену гумусовой теории питания растений пришла минеральная теория немецкого химика Ю. Либиха, в которой подчёркивалась роль минеральных элементов почвы в корневом питании растений. Работы Либиха содействовали развитию физиологических исследований и внедрению минеральных удобрений в сельскохозяйственную практику. Ж. Буссенго использовал разработанный им вегетационный метод для изучения закономерностей поступления азота и др. минеральных элементов в растение. Буссенго и немецкий учёный Г. Гельригель выявили специфические особенности бобовых растений как азотфиксаторов, а русский ботаник М. С. Воронин в 1866 доказал, что клубеньки, образующиеся на корнях этих растений, имеют бактериальную природу.

Большую роль в развитии Ф. р. в 19 в. сыграли немецкие учёные Ю. Сакс, В. Пфеффер, австрийские ботаники Ю. Визнер, Х. Молиш, чешские учёные Б. Немец и Ю. Стокласа и другие исследователи. Так, например, физиолог Пфеффер, встретившись с задачей объяснения механизма изменений объема живых растительных клеток при раздражениях, открыл существование осмоса и дал экспериментальный материал для обоснования учения об аналогии газового состояния и состояния веществ в разбавленных растворах. Это учение стало краеугольным камнем зарождавшейся в последней четверти позапрошлого века новой научной дисциплины -- физической химии. А ботаник Депо был одним из основателей учения о двухмерном состоянии материи, о так называемых мономолекулярных пограничных пленках. Значение этого учения быстро вышло за пределы первоначально изучавшейся проблемы. Оно стало основой представлений о лабильных структурах, характеризующихся определенным размещением и ориентировкой молекул.

К моменту публикации трактата «Физиология растений» Пфеффера (конце XIX в.) наметилось обособление отдельной дисциплины из Ф.р.-- общей микробиологии, в значительной мере представляющей собой частную физиологию низших растительных организмов, что повлекло сужение круга объектов фитофизиологии, детальное изучение которых составило предмет данной отрасли знания. Но содержание физиологии растений быстро обогащалось благодаря как возникновению совершенно новых разделов, например физиологии развития, так и новым подходам к изучению основных жизненных функций.

К концу XIX века эволюция во взглядах на органическую форму связана с учением Чарлза Дарвина, впервые прочно утвердившим идею развития органического мира и объяснил, каким образом совершается процесс его эволюции. Дарвиновское учение провозгласило, что живой мир имеет свою историю, свое настоящее и будущее, что именно этой истории органической формы и отвечают свойственные ей физиологические особенности. Основываясь на том, что отличительным свойством организмов является их приспособленность к окружающей среде, Дарвин впервые дал свободное от теологических измышлений объяснение целесообразности строения организмов и тем самым создал качественно новую обстановку для развития физиологии. Дарвину физиология обязана рождением, так называемого, сравнительного метода, который широко используется при изучении проблемы изменчивости физиологических функций в связи с условиями жизни организмов. Ему же обязана своим становлением эволюционная физиология, изучающая специфические особенности обмена веществ у организмов, находящихся на различных ступенях филогенетического развития.

В середине XIX в. физиология растений стала выделяться в самостоятельные кафедры при университетах, в том числе и в России (1863г.). Петербургская и Московская школы физиологов растений берут начало от первого отечественного ботаника, физиолога и агронома Н.И. Железнова (1847 - 1867гг), который провёл впервые в России исследования по эмбриологии растений и положил начало работам по физиологии растений. Он в значительной степени определил становление кафедры анатомии и физиологии растений в Московском Университете и показал практическое значение физиологии растений, как научной основы растениеводства. Наиболее способным среди многочисленных учеников профессора Н.И. Железнова был С.А Рачинский (1859-1870), ставший впоследствии профессором первой в России самостоятельной кафедры физиологии растений при Московском университете. С.А Рачинский осуществил первый перевод на русский язык книги Ч. Дарвина «Происхождение видов», выдержавшей три издания и способствовавшей широкому распространению эволюционного учения среди русских биологов. С.А. Рачинскому принадлежат работы по выяснению механизма ростовых движений у растений, изучению химического состава клеточного сока растений, роли цитоплазмы в жизни растений.

Во 2-й половине 19 в. и начале 20 в. были сделаны основополагающие открытия в области изучения обмена веществ и энергии в растительных организмах. С этого времени связь физиологии и биохимии растений становится особенно тесной. Впервые термин "обмен веществ" применительно к растениям ввёл русский ботаник А. С. Фаминцын (1883). А.С. Фаминцын (1835-- 1918) стал первым русским ученым, посвятившим себя физиологии растений, который создал крупную научную школу и выпустил первый отечественный учебник (1885) и монографию по физиологии растений. Ему принадлежат открытие фотосинтеза на искусственном свету, работы по росту и развитию, превращению веществ, симбиотическим взаимоотношениям между водорослями и грибами, сравнительной и эволюционной физиологии растений. С именем этого замечательного ученого связана и организация первой в нашей стране лаборатории по физиологии растений при Академии наук. Среди представителей его научной школы выделяют Д.И.Ивановского -- основоположника вирусологии, С.Н. Виноградского -- первооткрывателя хемосинтеза, М.С. Цвета -- автора хроматографического метода, О.В. Баранецкого -- крупного специалиста в области водного режима растений, И.П. Бородина -- специалиста по экологии дыхания растений, А.А. Рихтера -- автора теории хроматической адаптации водорослей и других видных ученых. Они внесли значительный вклад в экспериментальную ботанику и выдвинули отечественную физиологию растений на одно из первых мест в мире.

Если еще в середине XIX в. можно было довольствоваться представлением о дыхании как о медленном горении и трактовать этот процесс на основе простого уравнения полного сжигания сахаров до углекислоты и воды, то уже в конце XIX в. возникли новые воззрения на дыхание. Его стали рассматривать как ряд следующих друг за другом генетически связанных реакций. Наиболее интересной частью содержания раздела о дыхании растений стало изучение взаимной связи различных превращений при этом процессе. Так с конца 19 в. начались интенсивные исследования природы механизмов дыхания - процессов окисления органических веществ, осуществляющихся в биологических условиях без использования внешних источников энергии. Русский биохимик А. Н. Бах в 1896-97 создал перекисную теорию биологического окисления, являющуюся фундаментом современной теории радикалов. Перекисная теория послужила толчком к интенсивному изучению химизма и энзимологии дыхания. В. И.Палладин (1912) обосновал представления о биологическом окислении, в основе которого лежит дегидрирование, как об одном из основных этапов дыхания, что в дальнейшем получило развитие в работах немецкого учёного Г. Виланда. Существенный вклад в изучение дыхания и др. процессов внёс С. П. Костычев. Немецкий биохимик О. Варбург открыл роль железа как структурного элемента ферментов, связанных с биологическим окислением. Вскоре после этого английский учёный Д. Кейлин открыл цитохромы - важнейшую группу соединений, участвующих в транспорте электронов в фотосинтезе и в дыхании. Советский. физиолог В. О.Таусон первым начал исследовать энергетические параметры дыхания.

2-я половина 19 в. ознаменовалась важными исследованиями К. А. Тимирязева (1871г.) о роли хлорофилла в процессе фотосинтеза. Доказав приложимость к фотосинтезу растений закона сохранения энергии, К. А. Тимирязев (1875г.) обосновал и развил представления о космической роли зелёных растений, которые, осуществляя уникальную функцию фотосинтеза, связывают жизнь на Земле с энергией Солнца.

К.А. Тимирязев (1896) в Петровской академии организовал специальную физиологическую лабораторию и на Нижегородской выставке продемонстрировал первый в России вегетационный домик для выращивания растений, а затем стал организатором Московской школы физиологов растений. Так с 1872 г. в Московском университете началось изучение энергетики фотосинтеза, обоснование применимости закона сохранения энергии к фотосинтезу. Крупный физиолог растений, блестящий экспериментатор, историк науки и ее талантливый популяризатор К.А. Тимирязев создал замечательную сводку «Жизнь растения», имевшую непреходящее значение, существенно развил и пропагандировал исторический подход в биологическом исследовании. Его учениками стали Ф.Н. Крашенинников, занимавшийся изучением продуктов фотосинтеза с энергетической точки зрения, В.И. Палладии, один из авторов современного представления о дыхании растений, Е.Ф. Вотчал, много сделавший в изучении механизма движения восходящего водного тока в древесных растениях, основоположник отечественной физиологии древесных растений Л.А. Иванов и выдающийся физиолог-агрохимик Д.Н. Прянишников. Так детальным изучением процессов обмена азотистых веществ в растении, результаты которого привели к коренным изменениям в практике применения азотсодержащих удобрений, наука обязана советскому агрохимику Д. Н. Прянишникову.

Большое значение имели работы Д. Н. Прянишникова и его школы в области фосфорного и калийного питания растений, известкования почв и во многих др. областях физиологии минерального питания. Важную роль сыграли работы его учеников. Г. Г. Петров детально изучил процессы метаболизма азота в растении в зависимости от условий освещения, И. С. Шулов создал ряд вариантов вегетационного метода (метод текучих растворов, стирильных культур и др.), с помощью которых он доказал способность корней растений ассимилировать органические соединения, в том числе и некоторые белковые соединения, Ф. В. Чириков исследовал физиологические особенности с.-х. растений, различающихся по способности усваивать труднорастворимые формы фосфатов почвы. В области водообмена и засухоустойчивости растений фундаментальные работы принадлежат Н. А. Максимову. На основе работ в области физиологии микроорганизмов, среди которых особое место принадлежит открытию С. Н. Виноградским хемосинтеза (1887), стали всё более четко вырисовываться закономерности круговорота отдельных элементов в природе, выявляться роль в этом процессе растений и их симбиотических взаимоотношений с микрофлорой почвы.

Физиология растений XIX-го века в действительности изучала отдельные стороны жизнедеятельности растений, причем такое состояние науки соответствовало периоду начального накопления фактического материала и разработки методов исследования. В ХХ в. физиология растений вступала в период научных исследований, где установление взаимной связи функций растительного организма и их зависимости от внешних и внутренних факторов, изучение взаимодействия органов растения стало ведущей линией в научных поисках.

Первая четверть XX в. характеризуется участием ряда выдающихся химиков в разработке проблем химии растительных веществ, а затем и обмена веществ растений. Трудами Вильштеттера, Каррера, Куно, Эмилия Фишера и ряда других ученых было сделано так много в понимании свойств растительных пигментов, белков и углеводов, что появилась возможность возникновения самостоятельной отрасли ботанических знаний -- биохимии растений. В курсе «Физиология растений» С. П. Костычева, бывшего одновременно выдающимся биохимиком и фитофизиологом, была сделана попытка охватить в одном руководстве все возраставший материал фитофизиологии и новой нарождавшейся дисциплины -- биохимии растений.

XX в. -- время наиболее бурного и многостороннего развития физиологии растений. Если в XIX столетии в центре внимания физиологов находились вопросы воздушного и минерального питания, водного обмена и дыхания, то такие проблемы, как физиология клетки, рост, развитие, раздражимость, устойчивость к неблагоприятным факторам в то время только зарождались.

Постепенно по мере своего развития некоторые из этих разделов накопили такую массу знаний и стали иметь такое большое значение для практики, что обособились от нее и превратились в самостоятельные дисциплины. В 1902 г. от физиологии растений отделилась вирусология, в 1910 г. оформилась в самостоятельную науку агрохимия, в 1930 г. -- микробиология и биохимия. В первой половине XX в. развернулись исследования по экологической и частной физиологии растений. В 1919 году Н.И. Вавилов стал основателем учения об иммунитете растений, положившего начало изучению его генетической природы. Позже Рубин Б.А. (1949-1976) создал физиолого-биохимическую теорию иммунитета растений к патогенным агентам.

Дальнейшее развитие физиологии растений связано с успехами смежных наук. В 30--50-х годах XX в. успешно развивались биохимия, цитология, генетика и др., совершенствовались их методы. Началось проникновение научной информации из этих смежных, более молодых наук в физиологию растений. Например, полученные биохимиками в 40 -- 50-х годах данные о ферментных системах дыхания, фотосинтеза, азотного обмена, о принципах передачи энергии открыли перед физиологами новые возможности в исследовании этих процессов. Большой вклад в развитие Ф. р. внесли представители советской школы физиологов растений В. Р. Заленский, раскрывший роль сосущей силы как решающего регулятора водного баланса растения, В. В. Колкунов, установивший взаимосвязь между анатомическим строением, В. Н. Любименко, доказавший, что хлорофилл в хлоропластахнаходится не в свободном состоянии, а связан с белками. В 1950 году завершилось строительство первой в стране лаборатории искусственного климата - прототипа современных фитотронов, которая позволяла работать в контролируемых условиях по следующим проблемам, сформулированными И.И. Гунаром: «Целостность и раздражимость растительного организма, динамика основных физиологических процессов» (1950-1965), «Физиологические элементы регуляторной системы растений» (1966-1975).

Достижения физиологии растений в России в 40 -- 70-х связаны с трудами Д.А. Сабинина (1932-1949) по значению корневой системы в водном и минеральном питании растений, по росту и развитию растений. Он предугадал роль гормонов в жизни растений и показал активное участие корней в процессах метаболизма и влияние круговорота элементов минерального питания на рост и формообразование растений.

С середины 1970-х годов, наряду с продолжением и углублением традиционных направлений научных исследований, появились и новые. В частности, центр тяжести был перенесен на изучение физиологических слагаемых продукционного процесса, выявление путей их регуляции на организменном и ценотическом уровнях, донорно-акцепторных отношений, складывающихся между отдельным частями растений в течение онтогенеза, реакции различных генотипов растений на изменение экологических факторов среды, адаптивных потенциалов сортов и гибридов, представляющих интерес для селекции и производства. Н.Н. Третьяков, М.Н.. Кондратьев и др. исследовали влияние ионного состава и температуры корнеобитаемой среды на поглощение различных форм азота и формирование качества урожая; Е.И. Кошкин, М.В. Моторина изучали особенности фотосинтетической деятельности посевов и продукционный процесс.

Использование физико-химических методов во второй половине прошлого века привело к взаимопроникновению идей физиологии растений, с одной стороны, и биохимии, биофизики, молекулярной биологии, генетики и микробиологии -- с другой. ТакКрасновский А.А. (1976) создал новое, пограничное между биохимией, биофизикой и фотохимией, направление науки - фотобиохимию. Им были проведены фундаментальные исследования принципов биологического и фотохимического преобразования солнечной энергии, которые легли в основу современных представлений о механизме фотосинтеза и оказали решающее влияние на развитие работ по фотосинтезу и фотобиологии в нашей стране. В 80-90-х А.Л. Курсанов изучил основы транспорта ассимилянтов и интеграцию функциональных систем в растительном организме, А.А. Ничипорович создал теорию фотосинтетической продуктивности растений, М.Х. Чайлахян предложил гормональную теорию онтогенеза и регуляцию цветения, Р.Г. Бутенко (1986 г.) основала новый раздел физиологии растений - биологию клетки растений in vitro, изучила механизмы морфогенеза в культуре изолированных клеток и тканей. Исследования О.Н. Кулаевой (1976-2010) положили начало работам по выяснению механизма действия цитокининов, что перевело проблему регуляции цитокининами старения/омоложения в общебиологическую проблему в мировой науке.

Этот исторический период в развитии физиологии растений можно назвать периодом интеграции. Он пришел на смену периоду обособления и продолжается до сегодняшнего дня. И на этом этапе истории биологии на первое место выйдет роль наук, способных к интеграции сложных систем вплоть до пролиферации и дифференцировке клеток, морфогенеза, онтогенеза, адаптивных процессов целого организма, основанных на первичных матричных структурах и процессах клетки. На постгеномном этапе истории именно физиология, биохимия, биофизика, цитология, иммунология получат неограниченный простор для решения самых сложных проблем биологии ХХI века.

2. Современные направления развития физиологии растений

Задача физиологии растений как науки - исследование процессов метаболизма, роста и развития растений, выяснение механизмов этих процессов и взаимосвязей между ними. Физиология растений охватывает весь круг процессов, происходящих в растительном организме, и соответственно подразделяется на ряд направлений:

· в основе этих направлений лежит учение о растительной клетке, особенностях её структуры и функционирования, а так же о механизмах восприятия и передачи сигнала в растении;

· ряд направлений физиологии растений посвящён исследованию отдельных процессов обмена веществ у растений. Это такие разделы, как фотосинтез, дыхание, водный обмен, минеральное питание и вторичный метаболизм. Физиология роста и развития растений изучает механизмы роста и дифференцировки клеток, тканей и органов, механизмы размножения растений, а также механизмы их регуляции факторами внешней среды, такими как свет, температура и т.п.;

· отдельным направлением можно выделить изучение механизмов движения растений;

· физиология устойчивости растений исследует механизмы, при помощи которых растения защищаются от действия неблагоприятных факторов среды, как биотических (патогенные бактерии, грибы, вирусы), так и абиотических (засуха, засоление, повышенные и пониженные температуры, избыток солнечного света);

· особняком стоит такое направление, как культура клеток растений. Оно посвящено исследованию поведения растительных клеток и тканей в культуре in vitro , разработке методов их выращивания и соответствующих биотехнологий (микроклональное размножение растений, производство лекарств и пищевых добавок и т.п.).

Направления, посвящённые исследованию обмена веществ растений, такие как фотосинтез, дыхание и минеральное питание, также имеют прямой практический выход в сельское хозяйство. Они позволяют разработать новые эффективные удобрения и регуляторы роста, вывести более продуктивные сорта растений.

В основе всех направлений современной физиологии растений лежат биохимические, биофизические, молекулярно-биологические методы исследования.

3. Р ибосомы. Б иосинтез белка

Процесс биосинтеза белка рибосомами, называемого трансляцией , вовлечено множество макромолекул и макромолекулярных комплексов. На этом этапе реализации генетической информации происходит считывание генетической информации, заключенной в мРНК, рибосомами и ее передача полипептидным цепям белков, т.е. биосинтез полипептидных цепей, последовательность аминокислот в которых, как правило, однозначно определена последовательностью нуклеотидов в транслируемых мРНК в соответствии с генетическим кодом. Свободные аминокислоты не узнаются рибосомами. Чтобы это произошло, аминокислоты должны поступать в рибосомы в виде конъюгатов с тРНК (аминоацилированных тРНК), последовательности нуклеотидов которых распознаются аппаратом трансляции. В каждой молекуле тРНК имеется участок из трех нуклеотидов, комплементарный кодону мРНК. Именно эта последовательность, называемая антикодоном , в основном определяет положение той или иной аминокислоты в полипептидной цепи. В ходе каждого индивидуального акта трансляции рибосома распознает кодон мРНК и в соответствии с ним выбирает аминоацилированную тРНК, антикодон которой соответствует транслируемому кодону. После этого происходит соединение посредством пептидной связи очередной аминокислоты с С-концевой аминокислотой растущей цепи полипептида. физиология растение биосинтез транспирация

Таким образом, во время трансляции рибосома после связывания мРНК начинает последовательно, кодон за кодоном, перемещаться вдоль матрицы, выбирая из окружающей среды молекулы аминоацилированных тРНК. При этом каждый индивидуальный акт трансляции завершается присоединением выбранной молекулы аминокислоты к С-концевой аминокислоте синтезируемой цепи белка посредством пептидной связи. Ниже более подробно будут рассмотрены основные этапы биосинтеза белка и компоненты белоксинтезирующей системы бактерий.

4. Значение вакуоли в осмотических явлениях клетки

Жизнедеятельность клетки характеризуется непрерывно протекающими в ней процессами обмена веществ, причем цитоплазма избирательно реагирует на воздействие разных факторов внешней среды. В поглощении и выделении веществ большую роль играют процессы диффузии и осмоса . Осмотическими называют явления, происходящие в системе, состоящей из двух растворов, разделенных полупроницаемой мембраной. В растительной клетке роль полупроницаемых пленок выполняют пограничные слои цитоплазмы: плазмалемма и тонопласт.

Плазмалемма - наружная мембрана цитоплазмы, прилегающая к клеточной оболочке. Тонопласт - внутренняя мембрана цитоплазмы, окружающая вакуоль. Вакуоли представляют собой полости в цитоплазме, заполненные клеточным соком - водным раствором углеводов, органических кислот, солей, белков с низким молекулярным весом, пигментов.

Концентрация веществ в клеточном соке и во внешней среде (в почве, водоемах) обычно не одинаковы. Если внутриклеточная концентрация веществ выше, чем во внешней среде, вода из среды будет диффундировать в клетку, точнее в вакуоль, с большей скоростью, чем в обратном направлении, т. е. из клетки в среду. Чем больше концентрация содержащихся в клеточном соке веществ, тем сильнее сосущая сила - сила, с которой клетка<всасывает воду>. При увеличении объема клеточного сока, вследствие поступления в клетку воды, увеличивается его давление на цитоплазму, плотно прилегающую к оболочке. При полном насыщении клетки водой она имеет максимальный объем. Состояние внутреннего напряжения клетки, обусловленное высоким содержанием воды и развивающимся давлением содержимого клетки на ее оболочку носит название тургора (рис. 10, А). Тургор обеспечивает сохранение органами формы (например, листьями, неодревесневшими стеблями) и положения в пространстве, а также сопротивление их действию механических факторов. С потерей воды связано уменьшение тургора и увядание.

Если клетка находится в гипертоническом растворе , концентрация которого больше концентрации клеточного сока, то скорость диффузии воды из клеточного сока будет превышать скорость диффузии воды в клетку из окружающего раствора. Вследствие выхода воды из клетки объем клеточного сока сокращается, тургор уменьшается. Уменьшение объема клеточной вакуоли сопровождается отделением цитоплазмы от оболочки - происходит плазмолиз .

В ходе плазмолиза форма плазмолизированного протопласта меняется. Вначале протопласт отстает от клеточной стенки лишь в отдельных местах, чаще всего в уголках. Плазмолиз такой формы называют уголковым (рис. 10, Б).

Затем протопласт продолжает отставать от клеточных стенок, сохраняя связь с ними в отдельных местах, поверхность протопласта между этими точками имеет вогнутую форму. На этом этапе плазмолиз называют вогнутым (рис. 10, В).

Постепенно протопласт отрывается от клеточных стенок по всей поверхности и принимает округлую форму. Такой плазмолиз носит название выпуклого (рис. 10, Г).

Если у протопласта связь с клеточной стенкой в отдельных местах сохраняется, то при дальнейшем уменьшении объема в ходе плазмолиза протопласт приобретает неправильную форму. Протопласт остается связанным с оболочкой многочисленными нитями Гехта . Такой плазмолиз носит название судорожного (рис. 10, Д).

При длительном нахождении клеток в растворе нитрата калия (15 мин. и более) цитоплазма набухает в удлиненных клетках, там, где протопласт не касается клеточных стенок, образуются так называемые колпачки цитоплазмы. Такой плазмолиз носит название колпачкового (рис. 10, Е).

Рис. 10. Плазмолиз растительной клетки:

А - клетка в состоянии тургора; Б - уголковый; В - вогнутый; Г - выпуклый; Д - судорожный; Е - колпачковый.

1 - оболочка, 2 - вакуоль, 3 - цитоплазма, 4 - ядро, 5 - нити Гехта.

Если плазмолизированную клетку поместить в гипотонический раствор , концентрация которого меньше концентрации клеточного сока, вода из окружающего раствора будет диффундировать внутрь вакуоли. В результате увеличения объема вакуоли повысится давление клеточного сока на цитоплазму, которая начинает приближаться к стенкам клетки, пока не примет первоначальное положение - произойдет деплазмолиз .

5. Транспирация. Её виды и значение

В основе расходования воды растительным организмом лежит процесс испарения -- переход воды из жидкого в парообразное состояние, происходящий при соприкосновении органов растения с ненасыщенной водой атмосферой. Однако этот процесс осложнен физиологическими и анатомическими особенностями растения, и его называют транспирацией.

Количество воды, испаряемой растением, во много раз превосходит объем содержащейся в нем воды. Экономный расход воды составляет одну из важнейших проблем сельскохозяйственной практики. К. А. Тимирязев назвал транспирацию, в том объеме, в каком она идет, необходимым физиологическим злом. Действительно, в обычно протекающих размерах транспирация не является необходимой. Так, если выращивать растения в условиях высокой и низкой влажности воздуха, то, естественно, в первом случае транспирация будет идти со значительно меньшей интенсивностью. Однако рост растений будет одинаков или даже лучше там, где влажность воздуха выше, а транспирация меньше. Вместе с тем транспирация в определенном объеме полезна растительному организму.

Транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете. Температура сильно транспирирующего листа может примерно на 7 °С быть ниже температуры листа завядающего, нетранспирирующего. Это особенно важно в связи с тем, что перегрев, разрушая хлоропласты, резко снижает процесс фотосинтеза (оптимальная температура для процесса фотосинтеза около 30--33 °С). Именно благодаря высокой транспирирующей способности многие растения хорошо переносят повышенную температуру.

Транспирация создает непрерывный ток воды из корневой системы к листьям, который связывает все органы растения в единое целое. С транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом, чем интенсивнее транспирация, тем быстрее идет этот процесс. Как уже говорилось, механизм поступления питательных веществ и воды в клетку различен. Однако некоторое количество питательных веществ может поступать пассивно, и этот процесс может ускоряться с увеличением транспирации.

Различают два типа транспирации: устьичную -- испарение воды через устьица и кутикулярную -- испарение воды через всю поверхность листовой пластинки. Впервые разграничение на кутикулярную и устьичную транспирацию было введено в 1877 г. В том, что действительно испарение идет не только через устьица, но и через кутикулу, легко убедиться. Так, если взять листья, у которых устьица расположены только с нижней стороны (например, листья яблони), и замазать эту сторону вазелином, то испарение воды будет продолжаться, хотя и в значительно уменьшенном размере. Следовательно, определенное количество воды испаряется через кутикулу.

6. Кутикулярная транспирация

Снаружи листья имеют однослойный эпидермис, внешние стенки клеток которого покрыты кутикулой и воском, образующие эффективный барьер на пути движения воды. На поверхности листьев часто развиты волоски, которые также влияют на водный режим листа, так как снижают скорость движения воздуха над его поверхностью и рассеивают свет и тем самым уменьшают потери воды за счет транспирации.

Интенсивность кутикулярной транспирации варьирует у разных видов растений. У молодых листьев с тонкой кутикулой она может составлять около половины всей транспирации. У зрелых листьев с более мощной кутикулой кутикулярная транспирация равна 1/10 общей транспирации. В стареющих листьях из-за повреждения кутикулы она может возрастать. Таким образом, кутикулярная транспирация регулируется главным образом толщиной и целостностью кутикулы и других защитных покровных слоев на поверхности листьев. Кутикулярная транспирация обычно составляет около 10% от общей потери воды листом.

Однако в некоторых случаях у растений, листья которых характеризуются слабым развитием кутикулы, доля этого вида транспирации может повышаться до 30%. Имеет значение также возраст листа. Молодые листья, как правило, имеют слабо развитую кутикулу и, следовательно, более интенсивную кутикулярную транспирацию. У старых листьев доля кутикулярной транспирации снова возрастает, так как, хотя кутикула и сохраняет достаточную толщину, в ней появляются трещины, через которые легко проходят пары воды. Трещины в кутикуле могут появляться и после временного завядания листьев, благодаря чему транспирация усиливается. Имеются данные, что кутикулярная транспирация меньше зависит от условий внешней среды по сравнению с устьичной.

7. Устьичная транспирация

Основная часть воды испаряется через устьица. Устьица играют важную роль в газообмене между листом и атмосферой, так как являются основным путем для водяного пара, углекислого газа и кислорода. Устьица находятся на обеих сторонах листа. Есть виды растений, у которых устьица располагаются только на нижней стороне листа. В среднем число устьиц колеблется от 50 до 500 на 1 ммІ. Транспирация через устьица идет почти с такой же скоростью, как и с поверхности чистой воды. Это объясняется законом И. Стефана: через малые отверстия скорость диффузии газов пропорциональна не площади отверстия, а диаметру или длине окружности. Поэтому, хотя площадь устьичных отверстий мала по отношению к площади всего листа (0,5-2 %), испарение воды через устьица идет очень интенсивно.

Транспирация слагается из двух процессов:

1. передвижения воды в листе из сосудов ксилемы по симпласту и, преимущественно, по клеточным стенкам, так как в стенках транспорт воды встречает меньшее сопротивление

2. испарения воды из клеточных стенок в межклетники и подъустьичные полости с последующей диффузией в окружающую атмосферу через устьичные щели.

Чем меньше относительная влажность атмосферного воздуха, тем ниже его водный потенциал. Если водный потенциал воздуха меньше водного потенциала подъустьичных полостей, то молекулы воды испаряются наружу.

Основным фактором, влияющим на открывание и закрывание устьиц, является содержание воды в листе, в том числе и в замыкающих клетках устьиц. Клеточные стенки замыкающих клеток имеют неодинаковую толщину. Внутренняя часть стенки, примыкающая к устьичной щели, более толстая, а внешняя -- более тонкая. По мере того как замыкающая клетка осмотически поглощает воду, более тонкая и эластичная часть ее клеточной стенки растягивается и оттягивает внутреннюю часть стенки. Замыкающие клетки принимают полукруглую форму и устьица раскрываются. При недостатке воды замыкающие клетки выпрямляются и устьичная щель закрывается. Кроме того, по мере увеличения водного дефицита в тканях растения повышается концентрация ингибитора роста абсцизовой кислоты. Она подавляет деятельность Н+ - насосов в плазмалемме замыкающих клеток, вследствие чего снижается их тургор и устьица закрываются. Абсцизовая кислота также ингибирует синтез фермента б-амилазы, что приводит к снижению гидролиза крахмала. По сравнению с низкомолекулярными углеводами крахмал не является осмотически активным веществом, поэтому сосущая сила замыкающих клеток уменьшается, и устьица закрываются.

В отличие от других клеток эпидермиса замыкающие клетки устьиц содержат хлоропласты. Синтез углеводов в процессе фотосинтеза в замыкающих клетках увеличивает их сосущую силу и вызывает поглощение воды, способствуя этим открыванию устьиц.

Состояние устьиц зависит от углекислого газа. Если концентрация СО2 в подъустьичной полости падает ниже 0,03%, тургор замыкающих клеток увеличивается и устьица открываются. Повышение концентрации СО2 в воздухе вызывает закрытие устьиц. Это происходит в межклетниках листа ночью, когда в результате отсутствия фотосинтеза и продолжающегося дыхания уровень углекислого газа в тканях повышается. Такое влияние углекислого газа объясняет, почему ночью устьица закрыты и открываются с восходом солнца. Сдвиг рН в щелочную сторону вследствие уменьшения концентрации СО2 увеличивает активность ферментов, участвующих в распаде крахмала, тогда как при кислом рН при повышении содержания СО2 в межклетниках повышается активность ферментов, катализирующих синтез крахмала.

На свету замыкающие клетки устьиц содержат значительно больше калия, чем в темноте. При открывании устьиц содержание калия в замыкающих клетках увеличивается в 4 раза при одновременном снижении его содержания в сопутствующих клетках. Установлено повышение содержания АТФ в замыкающих клетках устьиц в процессе их открывания. АТФ, образованная в процессе фотосинтетического фосфорилирования в замыкающих клетках, используется для усиления поступления калия. Усиленное поступление ионов калия повышает сосущую силу замыкающих клеток. В темноте ионы калия выделяются из замыкающих клеток и устьица закрываются.

Периодичность суточного хода транспирации наблюдается у многих растений, но у разных видов растений устьица функционируют неодинаково. У деревьев, теневыносливых растений, многих злаков и других гидростабильных видов с совершенной регуляцией устьичной транспирации испарение воды начинается на рассвете, достигает максимума в утренние часы. В полдень транспирация снижается и вновь увеличивается в предвечерние часы при снижении температуры воздуха. Такой ход транспирации приводит к незначительным суточным изменениям осмотического давления и содержания воды в листьях. У видов растений, способных переносить резкие изменения содержания воды в клетках в течение дня, то есть у гидролабильных видов, наблюдается одновершинный суточный ход транспирации с максимумом в полуденные часы. В обоих случаях ночью транспирация минимальна или полностью прекращается.

По способности регулировать свой водный обмен, растения делят на пойкилогидрические и гомойогидрические. Пойкилогидрическими (от греч. poikilos -- различный, разнообразный и hydor -- вода) называются растения, которые не могут сами регулировать свой водообмен. К этой группе относятся почвенные водоросли, лишайники, мхи, папоротники и некоторые покрытосеменные. Гомойогидрическими (от греч. homoios -- сходный, одинаковый и hydor -- вода) называются растения, которые регулируют свой водообмен. Гомойгидрическими являются покрытосеменные растения.

Различают два типа регуляции транспирации: устьичный и вне-устьичный. Устьичная регуляция осуществляется с помощью открывания и закрывания устьиц. Закрывание устьиц наполовину мало влияет на интенсивность транспирации, что вытекает из закона Стефана. Полное их закрывание сокращает транспирацию примерно на 90 %.

8. Работа Тимирязева по фотосинтезу

К.А. Тимирязев известен как пламенный борец за торжество материалистического мировоззрения, как блестящий экспериментатор и смелый ученый-демократ.

Климент Аркадьевич Тимирязев родился 22 мая 1843 г. в Петербурге в дворянской, но демократически настроенной семье. В 1860 г. Тимирязев поступил на естественное отделение физико-математического факультета Петербургского университета.

Много времени и труда посвятил Тимирязев разработке важнейшего вопроса биологии: какова роль солнечного луча в создании зеленым растением органического вещества. В результате длительного изучения спектра поглощения у зеленого пигмента хлорофилла ученый установил, что наиболее интенсивно поглощаются красные и несколько слабее сине-фиолетовые лучи. Кроме того, он выяснил, что хлорофилл не только поглощает свет, но и химически участвует в самом процессе фотосинтеза. Современная наука окончательно подтвердила эти выводы ученого.

Однако главная научная заслуга Тимирязева заключается в доказательстве того, что величайший закон природы -- закон сохранения энергии -- распространяется и на процесс фотосинтеза, а следовательно, и на живую природу. Большинство исследователей тех лет, в особенности немецкие ботаники Ю. Сакс и В. Пфеффер, отрицали эту связь. К.А. Тимирязев показал, что его противники допустили ряд экспериментальных ошибок. Разработав методику необычайно точного исследования, Тимирязев установил, что только поглощаемые растением лучи производят работу, т.е. осуществляют фотосинтез. Зеленые лучи, например, не поглощаются хлорофиллом, и в этой части спектра фотосинтез не происходит. Кроме того, он отметил, что существует прямая пропорциональность между количеством поглощенных световых лучей и произведенной работой. Иными словами, чем больше световой энергии поглощено хлорофиллом, тем интенсивнее идет фотосинтез. Хлорофилл больше всего поглощает красные лучи, поэтому в красных лучах фотосинтез идет интенсивнее, чем в синих или фиолетовых, которые поглощаются слабее. Наконец, Тимирязев доказал, что на фотосинтез затрачивается не вся поглощенная энергия, а лишь некоторый ее процент (1-3%). Только после классических опытов К.А. Тимирязева наши знания о фотосинтезе получили прочный фундамент.

Также огромное влияние на развитие русской агрономической науки оказала доступно и интересно написанная Тимирязевым книга «Земледелие и физиология растений». Этот научный труд не утерял значения и в наше время.

9. Сравнительная характеристика -С3 и -С4 растений

С3-путь фотосинтеза

Восстановительный пентозофосфатный цикл фиксации CO 2 (С 3 -путь, или цикл Кальвина), открытый американскими учеными Э. Бенсоном и М. Калвином в 1950-е годы, универсален и обнаруживается практически у всех автотрофных организмов. В этом цикле (рис.5) фиксация СО 2 осуществляется на пятиуглеродное соединение рибулезобисфосфат (РуБФ) при участии фермента рибулезобисфосфаткарбоксилазы (РуБФ-карбоксилазы). Первым стабильным продуктом являются две молекулы трехуглеродного соединения 3-фосфоглицериновой кислоты (3-ФГК), восстанавливаемая затем с использованием АТФ и НАДФН до трехуглеводных сахаров, из которых образуется конечный продукт фотосинтеза -- шестиуглеродная глюкоза. Субстратом ключевого фермента фотосинтетической фиксации СО 2 -- РуБФ-карбоксилазы -- наряду с СО 2 может быть и О 2 . При взаимодействии РуБФ с кислородом реализуется гликолатный, или С 2 -путь, известный как фотодыхание. Большинство наземных растений осуществляют фотосинтез по С 3 -пути. Типичные представители этой группы -- горох, фасоль, конские бобы, шпинат, салат, капуста, пшеница, овес, рожь, ячмень, свекла, подсолнечник, тыква, томаты и другие одно- и двудольные растения.

С4-путь фотосинтеза

У некоторых видов растений (в основном тропических и очень небольшого числа видов из умеренных широт) первыми стабильными соединениями при фиксации СО 2 являются четырехуглеродные органические кислоты -- яблочная и аспарагиновая. Такие растения отличаются видимым отсутствием фотодыхания (или очень низким уровнем), высокой скоростью фиксации СО 2 в расчете на единицу поверхности листа, более высокой общей фотосинтетической продуктивностью, быстрой скоростью роста. Функционально и анатомически в ткани их листьев выделяют 2 типа фотосинтезирующих клеток -- клетки паренхимной обкладки, окружающие проводящие пучки, и клетки мезофилла.

Для всех растений этой группы характерна катализируемая ферментом фосфоенолпируваткарбоксилазой (ФЕП-карбоксилазой) фиксация СО 2 на трехуглеродное соединение фосфоенолпируват (ФЕП) с образованием щавелевоуксусной кислоты, которая далее превращается в яблочную (малат) или аспарагиновую кислоту. Эти реакции протекают в цитоплазме клеток мезофилла листа. С 4 -кислоты затем поступают в клетки обкладки проводящих пучков, где подвергаются декарбоксилированию, а высвободившаяся СО 2 фиксируется через цикл Кальвина. Следовательно, у С 4 -растений фотосинтетический метаболизм углерода пространственно разделен и осуществляется в клетках различного типа, т. е. по «кооперативному механизму», подробно описанному австралийскими исследователями М. Хетчем и К Слэком и советским биохимиком Ю. С. Карпиловым в конце 1960-1970 годов.

В соответствии с первичным механизмом декарбоксилирования С 4 -кислот все С 4 -растения подразделяются на три группы. НАДФ-малатдегидрогеназные растения осуществляют декарбоксилирование малата с помощью фермента НАДФ-малатдегидрогеназы в хлоропластах клеток обкладки проводящих пучков. Типичные представители этой группы -- кукуруза, сахарный тростник, сорго, росичка кроваво-красная и другие злаки. НАД-малатдегидрогеназные растения осуществляют декарбоксилирование малата с помощью митохондриальной НАД-малатдегидрогеназы. Первичным продуктом фиксации углекислоты у них является аспартат. К типичным представителям этой группы принадлежат различные виды амаранта, портулак огородный, просо обыкновенное, бизонья трава, растущая в прериях Северной Америки и др. Фосфоенолпируват-карбоксикиназные растения осуществляют декарбоксилирование аспартата в цитоплазме клеток обкладки проводящих пучков с образованием ФЕП. Типичные представители -- некоторые виды проса, хлориса, бутелуа.

У суккулентных растений, произрастающих в условиях водного дефицита, фиксация СО 2 осуществляется с помощью так называемого САМ-пути (метаболизм кислот по типу растений семейства толстянковых). Первичный продукт фиксации углекислоты (яблочная кислота) образуется у них в темновой период и накапливается в вакуолях клеток листа. В дневное время при закрытых устьицах (которые закрываются для сохранения воды в тканях листа) осуществляется декарбоксилирование этой кислоты, а освобождающаяся СО 2 поступает в цикл Кальвина.

Возникновение С4- и САМ-путей фотоассимиляции СО 2 связано с давлением на высшие наземные растения засушливого климата. С 4 -растения хорошо адаптированы к высокой интенсивности света, повышенным температурам и засухе. Оптимальная температура для осуществления фотосинтеза у них выше, чем у С 3 -растений. С 4 -растения наиболее многочисленны в зонах с высокими температурами. Они более экономно используют воду по сравнению с С 3 -растениями. В настоящее время известно, что все растения с С 4 -фотосинтезом -- цветковые (из 19 семейств:16 -- двудольных и 3 --однодольных). Не обнаружено ни одного семейства, которое бы состояло только из С 4 -растений.

10. Структура АТФ, ее синтез. Роль АТФ в обмене веществ

Аденозинтрифосфорная кислота (АТФ) состоит из органического основания аденина (I), углевода рибозы (II) и трех остатков фосфорной кислоты (III). Соединение аденина и рибозы называется аденозином. Пирофосфатные группы имеют макроэргические связи, обозначенные значком ~. Разложение одной молекулы АТФ с участием воды сопровождается отщеплением одной молекулы фосфорной кислоты и выделением свободной энергии, которая равна 33--42 кДж/моль. Все реакции с участием АТФ регулируются ферментными системами.

Аденозинтрифосфорная кислота (АТФ)

Синтез АТФ происходит в мембранах митохондрий в процессе дыхания, поэтому все ферменты и кофакторы дыхательной цепи, все ферменты окислительного фосфорилирования локализованы в данных органеллах.

Синтез АТФ происходит таким образом, что два иона Н + отщепляются от АДФ и фосфата (Р) с правой стороны мембраны, компенсируя потерю двух Н + при восстановлении вещества В. Один из кислородных атомов фосфата переносится на другую сторону мембраны и, присоединив два иона Н + из левого отсека, образует Н 2 О. Остаток фосфорила присоединяется к АДФ, образуя АТФ.

Схема окисления и синтеза АТФ в митохондриальных мембранах.

В клетках организмов изучено много биосинтетических реакций, использующих энергию, заключенную в АТФ, в ходе которых происходят процессы карбоксилирования и декарбоксилирования, синтеза амидных связей, образования макроэргических соединений, способных переносить энергию от АТФ к анаболическим реакциям синтеза веществ. Эти реакции играют важную роль в процессах обмена веществ растительных организмов.

С участием АТФ и других макроэргических нуклеозидполифосфатов (ГТФ, ЦТФ, УГФ) может происходить активирование молекул моносахаридов, аминокислот, азотистых оснований, ацилглицеринов путем синтеза активных промежуточных соединений, являющихся производными нуклеотидов. Так, например, в процессе синтеза крахмала с участием фермента АДФ-глюкозо-пирофосфорилазы образуется активированная форма глюкозы -- аденозиндифосфатглюкоза, которая легко становится донором глюкозных остатков при формировании структуры молекул этого полисахарида.

Список литературы

1. Лебедев С.И. Физиология растений. -- М.: Колос, 1982.--463 с, ил.

2. Физиология и биохимия сельскохозяйственных растений /Н. Н. Третьяков, Е. И. Кошкин, Н. М. Макрушин и др.; под ред. Н. Н. Третьякова. -- М.: Колос, 2000 -- 640 с: ил.

3. Кириллов Ю. И., Кокин Г. А. Физиология растений: Учебное пособие. Курган, издательство «Зауралье», 1998, 304 с. ил.

4. Н.А. Лемеза, Л.В. Камлюк, Н.Д. Лисов «Пособие по биологии для поступающих в ВУЗы».

5.Большая Советская энциклопедия.

6.А.А. Фёдоров «Жизнь растений в 6тт. Т. 2 Грибы».

7.«Физиология растений» / под ред. проф. Ермакова И.П. -- М.: Академия, 2007.

8.Холл Д., Рао К. «Фотосинтез»: Пер. с англ. -- М.: Мир, 1983.

Подобные документы

    Нуклеиновые кислоты, их структура, функциональные группы. Осмотическое давление различных клеток и тканей растения. Роль пигментов в жизни растений. Биосинтез углеводов, ферменты углеводного обмена. Роль аденозинтрифосфорной кислоты в обмене веществ.

    контрольная работа , добавлен 12.07.2010

    Общая характеристика водного обмена растительного организма. Структура и свойства воды, ее функции в метаболизме растений. Значение транспирации и влияние внешних условий на степень открытости устьиц. Физические основы устойчивости растений к засухе.

    курсовая работа , добавлен 12.09.2011

    Рассмотрение и анализ основных групп факторов, способных вызвать стресс у растений. Ознакомление с фазами триады Селье в развитии стресса у растений. Исследование и характеристика физиологии стрессоустойчивости растений с помощью защитных систем.

    контрольная работа , добавлен 17.04.2019

    История развития исследований в области физиологии растений. Принципы происхождения и развития хлоропласта из пропластиды в клетке растений. Основные функции, строение, фотосинтез и генетический аппарат хлоропластов. Характеристика продукции фотосинтеза.

    реферат , добавлен 11.12.2008

    Закономерности жизнедеятельности растительных организмов. Рациональное размещение растений в почвенно-климатических условиях. Механизмы онкопрофилактического действия фитостеринов. Физические и химические компоненты физиологии растений, фотосинтез.

    реферат , добавлен 15.12.2009

    Эволюция ботаники ХІХ века: развитие морфологии, физиологии, эмбриологии, систематики растений. Теории распространения растений по земному шару. Становление таких наук как - геоботаника, фитоценология, палеоботаника. Перспективы развития биологии в ХХІ в.

    контрольная работа , добавлен 10.01.2011

    Земные и космические факторы жизни растений. Солнечная радиация как основной источник света для растений. Фотосинтетически и физиологически активная радиация и ее значение. Влияние интенсивности освещения. Значение тепла и воздуха в жизни растений.

    презентация , добавлен 01.02.2014

    Особенности устройства, главные функции и элементы транспортной системы растений. Назначение стебля в растительном организме. Сущность и причины процесса транспирации. Транспирация и теория сцепления. Гипотеза Диксона и Джоли, ее доказательство.

    контрольная работа , добавлен 12.01.2011

    Общая характеристика растений как фотоавтотрофных организмов. Дифференциация тела растений, простые и сложные ткани. Первичные и вторичные меристемы. Ситовидные клетки и трубки как важнейшие части флоэмы. Виды паренхимы основных выделительных тканей.

    презентация , добавлен 28.01.2013

    Биология как наука, предмет и методы ее изучения, история и этапы становления и развития. Основные направления изучения живой природы в XVIII в., яркие представители биологической науки и вклад в ее развитие, достижения в области физиологии растений.

12345678910Следующая ⇒

Физиология (от греч. physis — природа, logos – учение) – наука, изучающая закономерности функционирования животных организмов, их отдельных систем, органов, тканей и клеток. Совокупность физиологических знаний подразделяют на ряд отдельных, но взаимосвязанных направлений – общую, частную и прикладную физиологию. В общую физиологию включают сведения, касающиеся природы основных жизненных процессов, общих проявлений жизнедеятельности, таких как метаболизм органов и тканей, общие закономерности реагирования организма и его структур на воздействие среды – раздражимость. Сюда же относят особенности, обусловленные уровнем структурной организации, разными условиями существования. Следовательно, общая физиология описывает те качественно своеобразные явления, которые отличают живое от неживого. Частная физиология исследует свойства отдельных тканей, органов, закономерности объединения их в системы, а также физиологию отдельных классов, групп и видов животных. Прикладная физиология изучает закономерности проявлений деятельности организма, особенно человека, в связи со специальными задачами и условиями. К числу таких разделов относят физиологию труда, спорта, питания, экологическая физиология. Физиологию принято также условно подразделять на нормальную и патологическую. Возникновение физиологии произошло в древности в связи с потребностями медицины, лучшие представители которой отчетливо понимали, что помочь больному можно лишь зная об устройстве тела. Отец медицины Гиппократ заложил основы для понимания роли отдельных систем и функций организма как целого. Подобных воззрений придерживался и другой знаменитый врач древности - римский анатом Гален, который впервые в истории ввел в практику медицины эксперимент. Его эксперименты послужили основой для теорий, которые без каких-либо существенных изменений просуществовали почти 14 веков. Зарождение физиологии как науки, которая изучает происходящие в организме процессы и объединяет их на основе наблюдений и экспериментов, относится в основном ко второй половине 16 – началу 18в. В это же время анатом Андреас Везалий первым правильно описал особенности строения человеческого тела, а также создал первое руководство на живот­ных. Важнейшим этапом в становлении физиологии при­нято считать 1628 год, когда английский врач и физио­лог Уильям Гарвей опубликовал свою бессмертную кни­гу «Анатомические исследования о движении сердца и крови у животных», в которой изложил основы своего великого открытия - существования кровообращения. От­крытие кровообращения стало возможным благодаря тому, что Гарвей ввел в практику научных исследова­ний новый прием - вивисекцию, или живосечение. Этот прием предусматривает обнажение покровов и тканей тех или иных органов животных посредством определенных разрезов, что создает возможность прямо­го наблюдения за работой этих органов. Помимо того, опыты проводили с применением различных воздействий на изучаемый процесс. Правильность представлений о наличии замкнутой системы кровообращения подтвердил итальянский био­лог Марчелло Мальпиги (1628-1694). Ему принадлежит открытие форменных элементов крови, альвеолярного строения легких, а также связи артерий с венами через капилляры. К числу наиболее важных достижений XVII-XVIII вв. относится сформулированное французским философом, математиком, физиком и физиологом Рене Декартом представление об «отраженной деятельности организ­ма». Декарт, используя такие факты, как закономерно возникающее при прикосновении к роговице мигание, выдвинул понятие о рефлексе. К первой половине XVIII в. относится начало развития физиологии в Рос­сии. И. М. Сеченов вошел в историю науки как «отец рус­ской физиологии», мыслитель, впервые дерзнувший под­вергнуть экспериментальному анализу самую сложную об­ласть природы - явление сознания. Научная деятельность И. М. Сеченова состояла из не­скольких этапов. Он был первым, кому удалось извлечь и проанализировать растворенные в крови газы, устано­вить относительную эффективность влияния различных ионов на физико-химические процессы в живом организ­ме, обнаружить явление суммации в центральной нерв­ной системе. Он также стал основоположником нового направления физиологии - физиологии труда. Наибольшую славу русской науке принесло открытие И. М. Сеченовым (1862) торможения в центральной нерв­ной системе. На развитие отечественной и мировой физиологии ог­ромное влияние оказали работы И. П. Павлова - выдаю­щегося представителя естествознания, создателя учения о высшей нервной деятельности животных и человека. Павлов ус­тановил существование специальных нервов, одни из ко­торых усиливают, другие - задерживают работу сердца, третьи - способны изменять силу сердечных сокращений без изменения их частоты. И. П. Павлов объяснил это яв­ление свойством данных нервов менять функциональное состояние сердечной мускулатуры, уменьшая ее трофику. Тем самым был заложен фундамент теории о трофической иннервации тканей. Одновременно с изучением сердечно-сосудистой систе­мы И. П. Павлов исследовал физиологию пищеварения. Разработав и применив целый ряд тонких хирургических методов, он, по существу, создал заново физиологию пи­щеварения. Изучая динамику секреторного процесса же­лудочных, поджелудочной и слюнных желез, работу пе­чени при употреблении разной пищи, И. П. Павлов показал их способность приспосабливаться к характеру возбуди­тельной секреции. В основе этих работ лежала идея не­рвизма, под которой И. П. Павлов понимал «физиологи­ческое направление, стремящееся распространить влияние нервной системы на возможно большее количество дея­тельности организма. В начале XX века В. М. Бехтеревым была установлена роль подкорковых структур в формировании эмоциональных и двигательных реакций животных и человека; открыты ядра и проводящие пути мозга; выявлены функциональ­но-анатомическая основа равновесия и ориентировки в пространстве; функции таламуса; определены в коре головного мозга центры движения и секреции внутренних органов; доказано, что двигательные поля коры больших полуша­рий являются основой индивидуально приобретенных движений. Фрейдом сформулирована идея о превалирующем значе­нии инстинктов, доминирующем значении бессозна­тельных психических процессов. А. А. Ухтомский сформулировал ведущий принцип работы головного моз­га - доминанту, выявил ее характерные черты - повы­шение возбудимости в доминантном центре, стойкость этого возбуждения во времени, возможность его суммации, инертность возбуждения и торможение других реф­лекторных механизмов, не участвующих в доминантной реакции. В настоящее время доминанта признана одним из основных механизмов деятельности мозга. В текущем столетии большой вклад внесен в изучение функциональных взаимоотношений коры головного моз­га и внутренних органов. К. М. Быков, изучая регулиру­ющее влияние коры больших полушарий на работу внут­ренних органов, показал возможность изменения их деятельности условнорефлекторным путем. Благодаря ис­следованию В. Н. Черниговским проблем чувствительно­сти внутренних органов, взаимоотношений с корой голов­ного мозга, а также определению проекций афферентных систем внутренних органов в коре полушарий, таламусе, мозжечке, ретикулярной формации, подробному изуче­нию безусловнорефлекторной деятельности этих органов при раздражении интероцепторов механическим, хими­ческим и другими агентами была открыта новая глава физиологии - интероцепция.

12345678910Следующая ⇒

Похожая информация:

Поиск на сайте:

Предмет, задачи возрастной физиологии и ее связь с другими науками

Возрастная физиология – это наука, изучающая особенности процесса жизнедеятельности организма на разных этапах онтогенеза.

Она является самостоятельной ветвью физиологии человека и животных, в предмет которой входит изучение закономерностей становления и развития физиологических функций организма на протяжении его жизненного пути от оплодотворения до конца жизни.

В зависимости от того какой возрастной период изучает возрастная физиология выделяют: возрастную нейрофизиологию, возрастную эндокринологию, возрастную физиологию мышечной деятельности и двигательной функции; возрастную физиологию обменных процессов, сердечно-сосудистой и дыхательной систем, систем пищеварения и выделения, физиологию эмбрионального развития, физиологию детей грудного возраста, физиологию детей и подростков, физиологию зрелого возраста, геронтологию (науку о старении).

Основными задачами изучения возрастной физиологии являются следующие:

Изучение особенностей функционирования различных органов, систем и организма в целом;

Выявление экзогенных и эндогенных факторов, определяющих особенности функционирования организма в различные возрастные периоды;

Определение объективных критериев возраста (возрастные нормативы);

Установление закономерностей индивидуального развития.

Возрастная физиология тесно связана со многими разделами физиологической науки и, широко использует данные из многих других биологических наук. Так, для понимания закономерностей формирования функций в процессе индивидуального развития человека необходимы данные таких физиологических наук, как физиология клетки, сравнительная и эволюционная физиология, физиология отдельных органов и систем: сердца, печени, почек, крови, дыхания, нервной системы и т. д.

В то же время открываемые возрастной физиологией закономерности и законы базируются на данных различных биологических наук: эмбриологии, генетики, анатомии, цитологии, гистологии, биофизики, биохимии и др. Наконец, данные возрастной физиологии, в свою очередь, могут быть использованы для развития различных научных дисциплин. Например, важное значение имеет возрастная физиология для развития педиатрии, детской травматологии и хирургии, антропологии и геронтологии, гигиены, возрастной психологии и педагогики.

История и основные этапы развития возрастной физиологии

Научное изучение возрастных особенностей детского организма началось сравнительно недавно – во второй половине XIX в. Вскоре после открытия закона сохранения энергии физиологи обнаружили, что ребенок потребляет в течение суток ненамного меньше энергии, чем взрослый, хотя размеры тела ребенка намного меньше. Этот факт требовал рационального объяснения. В поисках этого объяснения немецкий физиолог Макс Рубнер провел изучение скорости энергетического обмена у собак разного размера и обнаружил, что более крупные животные в расчете на 1 кг массы тела расходуют энергии значительно меньше, чем мелкие. Подсчитав площадь поверхности тела, Рубнер убедился, что отношение количества потребляемой энергии пропорционально именно величине поверхности тела – и это неудивительно: ведь вся потребляемая организмом энергия должна быть выделена в окружающую среду в виде тепла, т.е. поток энергии зависит от поверхности теплоотдачи. Именно различиями в соотношении массы и поверхности тела Рубнер объяснил разницу в интенсивности энергетического обмена между крупными и мелкими животными, а заодно – между взрослыми и детьми. «Правило поверхности» Рубнера стало одним из первых фундаментальных обобщений в физиологии развития и в экологической физиологии.

Этим правилом объясняли не только различия в величине теплопродукции, но также в частоте сердечных сокращений и дыхательных циклов, легочной вентиляции и объеме кровотока, а также в других показателях деятельности вегетативных функций. Во всех этих случаях интенсивность физиологических процессов в детском организме существенно выше, чем в организме взрослого.

Такой сугубо количественный подход характерен для немецкой физиологической школы XIX в., освященной именами выдающихся физиологов Э.Ф. Пфлюгера, Г.Л.Гельмгольца и других. Их трудами физиология была поднята до уровня естественных наук, стоящих в одном ряду с физикой и химией. Однако русская физиологическая школа, хотя и уходила корнями в немецкую, всегда отличалась повышенным интересом к качественным особенностям и закономерностям.

Выдающийся представитель русской педиатрической школы доктор Николай Петрович Гундобин еще в самом начале XX в.

утверждал, что ребенок – не просто маленький, он еще и во многом не такой, как взрослый. Его организм устроен и работает иначе, причем на каждом этапе своего развития детский организм прекрасно приспособлен к тем конкретным условиям, с которыми ему приходится сталкиваться в реальной жизни.

Эти идеи разделял и развивал замечательный русский физиолог, педагог и гигиенист Петр Францевич Лесгафт, заложивший основы школьной гигиены и физического воспитания детей и подростков. Он считал необходимым глубокое изучение детского организма, его физиологических возможностей.

Наиболее отчетливо центральную проблему физиологии развития сформулировал в 20-е годы XX в. немецкий врач и физиолог Э.Гельмрейх. Он утверждал, что различия между взрослым и ребенком находятся в двух плоскостях, которые необходимо рассматривать по возможности независимо, как два самостоятельных аспекта: ребенок как маленький организм и ребенок как развивающийся организм. В этом смысле «правило поверхности» Рубнера рассматривает ребенка только в одном аспекте – именно как маленький организм. Значительно более интересными представляются те особенности ребенка, которые характеризуют его как организм развивающийся.

К одной из таких принципиальных особенностей относится открытое в конце 30-х годов Ильей Аркадьевичем Аршавским неравномерное развитие симпатических и парасимпатических влияний нервной системы на все важнейшие функции детского организма. И.А.Аршавский доказал, что симпатотонические механизмы созревают значительно раньше, и это создает важное качественное своеобразие функционального состояния детского организма. Симпатический отдел вегетативной нервной системы стимулирует активность сердечно-сосудистой и дыхательной систем, а также обменные процессы в организме.

Такая стимуляция вполне адекватна для раннего возраста, когда организм нуждается в повышенной интенсивности обменных процессов, необходимой для обеспечения процессов роста и развития. По мере созревания организма ребенка усиливаются парасимпатические, тормозящие влияния.

Глава 1. История физиологии. Методы физиологических исследований

В результате снижается частота пульса, частота дыхания, относительная интенсивность энергопродукции.

Проблема неравномерности гетерохронности (разновременности) развития органов и систем стала центральным объектом исследования выдающегося физиолога академика Петра Кузьмича Анохина и его научной школы.

Им была в 40-е годы сформулирована концепция системогенеза, согласно которой последовательность разворачивающихся в организме событий выстраивается таким образом, чтобы удовлетворять меняющимся по ходу развития потребностям организма. При этом П.К.Анохин впервые перешел от рассмотрения анатомически целостных систем к изучению и анализу функциональных связей в организме.

Другой выдающийся физиолог Николай Александрович Бернштейн показал, как постепенно в онтогенезе формируются и усложняются алгоритмы управления произвольными движениями, как механизмы высшего управления движениями распространяются с возрастом от наиболее эволюционно древних подкорковых структур головного мозга к более новым, достигая все более высокого уровня «построения движений». В работах Н.А.Бернштейна впервые было показано, что направление онтогенетического прогресса управления физиологическими функциями отчетливо совпадает с направлением филогенетического прогресса. Таким образом, на физиологическом материале была подтверждена концепция Э. Геккеля и А.Н. Северцова о том, что индивидуальное развитие (онтогенез) представляет собой ускоренное эволюционное развитие (филогенез).

Крупнейший специалист в области теории эволюции академик Иван Иванович Шмальгаузен также многие годы занимался вопросами онтогенеза. Материал, на котором И.И.Шмальгаузен делал свои выводы, редко имел прямое отношение к физиологии развития, но выводы из его трудов о чередовании этапов роста и дифференцировок, а также методологические работы в области изучения динамики ростовых процессов, выполненные в 30-е годы, и до сих пор имеют огромное значение для понимания важнейших закономерностей возрастного развития.

В 60-е годы физиолог Акоп Арташесович Маркосян выдвинул концепцию биологической надежности как одного из факторов онтогенеза. Она опиралась на многочисленные факты, которые свидетельствовали, что надежность функциональных систем по мере взросления организма существенно увеличивается. Это подтверждалось данными по развитию системы свертывания крови, иммунитета, функциональной организации деятельности мозга.

В последние десятилетия накопилось много новых фактов, подтверждающих основные положения концепции биологической надежности А.А.Маркосяна.

На современном этапе развития медико-биологической науки также продолжаются исследования в области возрастной физиологии уже с использованием современных методов исследования.

Таким образом, физиологическая наука располагает в настоящее время значительной многосторонней информацией, касающейся функциональной деятельности любой физиологической системы детского организма и его деятельности как целого.

ПОСМОТРЕТЬ ЕЩЕ:

Основная статья: История физиологии

В России физиология начала развиваться в XVIII в. Уже с самого начала русская физиология обнаружила наибольший ин-терес к изучению физиологии нервной системы.

Основоположником физиологии нервной системы можно считать Ефрема Осиповича Мухина (1766 — 1850), профессора анатомии и физиологии Медико-хирур-гической академии Московского университета.

В XIX в. в России выдвинулась блестящая группа физиологов, среди которых особо выделился И. М. Сеченов. Почти одновременно с Сеченовым или немного позже работали В. Я. Данилевский в Харькове и И. А. Миславский в Казани.

Сформулированная отечественной физиологией, начиная от Мухина, затем Сеченовым, Павловым и др., рефлекторная теория вклю-чает в себя и деятельность коры больших полушарий. Это не ос-тавляет места для предположений, что какие-либо функции коры могут происходить спонтанно, без стимулов извне или изнутри.

Мухин Е. О.

В 1800 г. Е. О. Мухин защитил диссертацию о стимулах, воз-буждающих тело человека, и получил степень доктора медицины и хирургии. Главным направлением всей его научной деятельности было изучение функции нервной системы, выяснение значения раз-дражений, которые вызывают действия и обусловливают все явления жизни. Он считал, что раздражениями служат внешние и внутренние факторы, что все отправления тела детерминированы. При этом он указывал, что имеет значение и состояние организма, его реактивность. Раздражения, по его мнению, могут приводить и к действиям, и к прекращению действий (т. е. к торможению), в организме может происходить борьба между раздражениями, при-чем более сильное раздражение преодолевает более слабое; первей-шим местом ощущений он считал головной мозг; возбуждение, указывал он, быстро распространяется по нервам всего тела, на-подобие электрического тока; переход возбуждения с одной поло-вины тела на другую происходит в продолговатом мозге, в Варо-лиевом мосту, в спайке полушарий. Мухин настаивал, что работа нервной системы делает организм целостным и что благодаря своей способности реагировать на изменения внешней среды он сливается с ней воедино.

Высокие достоинства этого выдающегося и незаслуженно полузабытого русского физиолога видны из того, что мы и в настоящее время, через полтора века, почти ничего не можем изменить в указанном перечне его утверждений, настолько глубоко он проник в функции нервной системы еще тогда, когда не было даже хорошей методики ее исследования.

Сеченов И. М.

Наибольшее значение имеют труды Ивана Михайловича Сеченова, которого справедливо считают основоположником русской физиологии. Он был разносторонним ученым. Им были проведены исследова-ния по физиологии крови и разработана методика получения газов из крови. И. М. Сеченов много работал по физиологии дыхания и обмена веществ.

КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ФИЗИОЛОГИИ

Однако самые важные его работы касаются физиологии нервной системы, где он сделал классические открытия по вопросу о торможении в нервной системе и о функциях коры головного мозга. Работая много и плодотворно над механизмом рефлексов, их путях и суммации возбуждения и мозге, он пришел к выводу о преобладающей роли коры полушарий в нервной системе высших животных. Кора головного мозга получает раздражения от всех частей тела и посылает к ним возбуждения. Сеченов развил важнейший тезис в физиологии коры полушарий, заключающийся в признании того, что в основе деятельности коры лежат рефлектор-ные механизмы.

Данилевский В. Я.

Данилевский интересовался электрофизиологией, открыл электротоки в коре головного мозга, изучал мышечную систему и обмен веществ в ней.

Миславский И. А.

Миславский много занимался корой головного мозга, наблюдая эффекты от непосредственного ее раздражения в разных точках. Но важнейшей его заслугой было открытие места расположения дыхательного центра с точной его локализацией в продолговатом мозге. Школа Миславского изучала также иннервацию желез, особенно желез внутренней секреции.

Введенский И. Е.

В конце. XIX в. в русской физиологии видное место занимал И. Е. Введенский (Петербург), работавший по общим вопросам воз-буждении. Изучая на нервно-мышечном препарате явления уми-рания нерва, он открыл закономерности смены процесса возбуж-дения процессом торможения, известные под названием парабиоза. Замечательно, что установленные им закономерности приложимы ко всем проявлениям возбуждения в нервной системе и в других возбудимых образованиях. Материал с сайта http://wiki-med.com

Павлов И. П.

С конца XIX в. развитие физиологии в России связывается, и первую очередь, с деятельностью выдающегося исследователя и разностороннего экспериментатора Ивана Петровича Павлова (Санкт-Петербург). Его выдающиеся работы сосредото-чивались в двух больших областях физиологии. Это изучение процесса пищеварения, где Павлов дал замечательную методику наложения фистул на разные отделы пищеварительного канала, позволившую ему непосредственно наблюдать процессы в глубоко лежащих органах. Он с таким совершенством разработал эту об-ласть физиологии, что получил за эти работы Нобелевскую премию.

Изучая процессы пищеварения, И. П. Павлов обратил особое Внимание на роль в этих процессах нервной системы вообще и коры больших полушарий в особенности. В связи с этим Павловым было разработано учение об условных рефлексах, ставшее затем основным направлением его научной деятельности. Пользуясь условными рефлексами, Павлов получил возможность проникать в интимнейшие физиологические процессы в коре головного мозга. Разработка этих вопросов продолжается и сейчас с большим успе-хом.

Материал с сайта http://Wiki-Med.com

На этой странице материал по темам:

  • «знаменитые учёные физиологии

  • wiki-med.com

  • развитие физиологии в 21 веке

  • основные открытия в физиологии

  • история развития физиологии в россии реферат кратко

Становление физиологии как науки

⇐ ПредыдущаяСтр 17 из 33Следующая ⇒

Рождение физиологии как науки связано с именем выдающегося английского врача, физиолога и эмбриолога Уильяма Гарвея. (Harvey, Wiliiam, 1578-1657) (рис. 90), которому принадлежит заслуга создания стройной теории кровообращения.

В возрасте 21 года У. Гарвей окончил Кембриджский университет. В 24 года в Падуе стал доктором медицины. Вернувшись на родину, Гарвей стал профессором кафедры анатомии, физиологии и хирургии в Лондоне.

Основываясь на достижениях своих предшественников – Галена, Везалия, Коломбо, Фабриция – Гарвей математически рассчитал и экспериментально обосновал теорию кровообращения, согласно которой кровь возвращается к сердцу по малому, и большому кругам. В связи с тем, что при жизни Гарвея в физиологии еще не применяли микроскопа, он не мог увидеть капилляров, – их открыл Марчелло Мальпиги (Malpighi, Marcello, 1628-1694) через четыре года после смерти Гарвея. По мнению Гарвея, кровь переходила из артерий в вены по анастомозам и через поры тканей.

После многолетней проверки в эксперименте У. Гарвей изложил свою теорию в фундаментальном сочинении «Анатомическое исследование о движении сердца и крови у животных» («Exercitatio anatomica de motu cordis et sangvinis in animalibus», 1628) и сразу же подвергся ожесточенным нападкам со стороны церкви и многих ученых. Первым теорию Гарвея признал Р. Декарт, затем Г. Галилей, С. Санторио, А. Борелли. И. П. Павлов определил ее как не только «редкой ценности плод его ума, но и подвиг его смелости и самоотвержения».

Большое влияние на развитие естествознания (и физиологии в частности) оказала деятельность выдающегося английского философа Френсиса Бэкона (Bacon, Francis, 1561-1626). Не будучи врачом, Бэкон во многом определил пути дальнейшего развития медицины. В своем труде «О достоинстве и усовершенствовании наук» он сформулировал три основные задачи медицины: «первая состоит в сохранении здоровья, вторая – в излечении болезней, третья – в продолжении жизни». Занимаясь экспериментальными работами в области физиологии, Бэкон поставил перед медициной несколько конкретных вопросов: об изучении анатомии не только здорового, но и больного организма, о введении обезболивания, об использовании при лечении болезней природных факторов и развитии бальнеологии. Решение этих и многих других задач, выдвинутых Ф. Бэконом, потребовало столетий.

Современник Френсиса Бэкона выдающийся французский ученый Рене Декарт (Descartes, Rene, 1596-1650) в простейшем виде разработал схему рефлекторной дуги. Все нервы он разделил на центростремительные, по которым сигналы поступают в мозг, и центробежные, по которым из мозга сигналы движутся к органам. Декарт считал, что жизненные действия имеют рефлекторную природу и подчиняются механическим законам.

Р. Декарт явился типичным представителем ятрофизики – направления в естествознании и медицине, которое рассматривало живую природу с позиций физики. По сравнению со средневековой схоластикой метафизическое мышление XVII в. было явлением прогрессивным, и механистические взгляды Декарта оказали положительное влияние на дальнейшее развитие философии и естествознания в эпоху нового времени. Однако наряду с материалистическим пониманием мира Декарт в ряде вопросов толковал явления идеалистически. Так, он считал, что мышление является способностью души, а не тела.

Другим направлением в естествознании была ятромеханика. Ее основные положения четко изложены в сочинении «О движении животных» (рис.

История развития физиологии.

91) итальянского анатома и физиолога Джованни Альфонсо Борелли (Borelli, Giovanni Alfonso, 1608-1679)-одного из основоположников биомеханики. С позиций ятромеханики живой организм подобен машине, в которой все процессы можно объяснить при помощи математики и механики.

Среди выдающихся достижений эпохи Возрождения, имевших отношение как к физике, так и к медицине – изобретение в конце XVI в. термометра (точнее, воздушного термоскопа). Его автор – один из титанов эпохи Возрождения итальянский ученый Галилео Галилей (Galilei, Galileo, 1564-1642), подтвердивший и развивший гелиоцентрическую теорию Н. Коперника (1543). Множество его драгоценных рукописей было сожжено инквизицией. Но в тех, что сохранились, обнаружены: рисунки первого термоскопа. В отличие от современного термометра в нем расширялся воздух, а не ртуть. Почти одновременно с Галилеем профессор Падуанского университета Санторио (Santorius, 1561-1636), врач, анатом и физиолог, создал свой прибор, с помощью которого он измерял теплоту человеческого тела (рис. 92). Прибор был достаточно громоздким. Санторио установил его во дворе своего дома для всеобщего обозрения. Теплота различных частей тела определялась в течение десяти пульсовых ударов по изменению уровня жидкости в трубке, шкала которой была произвольной.

В начале XVII в. в Европе было сделано множество оригинальных термометров. Первый термометр, показания которого не зависели от перепадов атмосферного давления, был создан в 1641 г. при дворе Фердинанда II, императора Священной Римской империи, который не только слыл покровителем искусств, но и был автором ряда физических приборов. При его участии были созданы забавные по своей форме термометры, похожие на маленьких лягушат. Они предназначались для измерения теплоты тела человека и легко прикреплялись к коже пластырем. Полость «лягушат» заполнялась жидкостью, в которой плавали цветные шарики различной плотности. Когда жидкость согревалась, объем ее увеличивался, а плотность уменьшалась, и некоторые шарики погружались на дно прибора. Теплота тела пациента определялась согласно количеству разноцветных шариков, оставшихся на поверхности: чем их меньше, тем выше теплота тела испытуемого.

Разработка единой шкалы градусов растянулась на столетие. Последнее слово в этом вопросе принадлежит шведскому астроному и физику Андерсу Цельсию (Celsius, Anders, 1701-1744), который в 1742 г. предложил стоградусную шкалу: за 0° он принял температуру кипения воды, а точка таяния льда соответствовала 100°. Впоследствии эту шкалу перевернули, сделав 0° точкой таяния льда и началом отсчета. В таком виде шкала Цельсия дошла до наших дней, завоевав самую широкую популярность.

В медицинской практике термометрия начала применяться значительно позже – только во второй половине XIX в. Активное внедрение этого метода в России в 1860 г. связано с именем выдающегося русского клинициста С. П. Боткина (см. с. 270).

Ятрохимия и медицина

Наряду с ятрофизикой и ятромеханикой в эпоху Возрождения широкое развитие получила ятрохимия – направление в медицине, связанное с успехами химии. Ятрохимики считали, что процессы, совершающиеся в организме, являются химическими, поэтому с химией должно быть связано как изучение этих процессов, так и лечение болезней.

Одним из основоположников ятрохимии является выдающийся врач и химик раннего Возрождения Филипп Ауреол Теофраст Бомбаст фон Гоген-гейм, известный в истории под псевдонимом Парацельс (Hohenheim, Philippus Aureolus Theophrastus Bombastus von – Paracelsus, 1493-1541). Швейцарец по происхождению, он получил образование в университете в Ферраре (Италия) и впоследствии читал лекции в Базельском университете на своем родном немецком языке вместо принятого в научном мире латинского.

Парацельс явился одним из основоположников опытного метода в науке. «Теория врача есть опыт. Никто не может стать врачом без науки и опыта», – утверждал он.

Во времена Парацельса хирургия в Европе не считалась областью медицины и в университетах не преподавалась (ею занимались ремесленники), и Парацельс настаивал на объединении хирургии и медицины (т. е. терапии) в одну науку, потому что обе они исходят из одного корня. Сам он с гордостью называл себя «доктором обеих медицин». Его книги «Малая хирургия» («Chirurgia minor», 1528), «Большая хирургия» («Chirurgia magna», 1536) и другие пользовались большой популярностью (рис. 93).

С Парацельса начинается кардинальная перестройка химии в ее приложении к медицине: от поисков путей получения золота – к приготовлению лекарств. Согласно Парацельсу, здоровье связано с нормальным содержанием в организме человека трех начал: серы, ртути и соли; нарушение их правильных соотношений приводит к болезни. Вот почему врачи и аптекари эпохи Возрождения придавали большое значение лекарственным препаратам, содержащим серу, ртуть и различные соли, и часто сами выплавляли их из природных руд. Парацельс с гордостью писал, что он и его ученики «отдых в лаборатории имеют, пальцы в угли и отбросы и всякую грязь суют, а не в кольца золотые, и подобны кузнецам и угольщикам закопченным».

В своих сочинениях он писал также о болезнях рудокопов и литейщиков, связанных с отравлениями серой, свинцом, ртутью, сурьмой и, таким образом, закладывал основы будущей науки о профессиональных болезнях. О болезнях рудокопов и их предупреждении писал также современник Парацельса Георг Бауэр, известный под псевдонимом Агракола (Agricola, Georg, 1493-1541), в сочинении «О горном деле и металлургии» («De re metallica.», 1556).

Развитие медицинской химии в эпоху Возрождения привело к расширению аптекарского дела. Аптека как самостоятельное учреждение возникла во второй половине VIII в. на Ближнем Востоке. (Первая аптека на Ближнем и Среднем Востоке была открыта в 754 г. в столице Халифата – г. Багдаде.) В Европе первые аптеки появились в XI в. в испанских городах Толедо и Кордова. К XV в. они широко распространились по всему континенту.

В эпоху Возрождения размеры аптекарских лавок значительно, увеличились: из простых лавок периода развитого средневековья, когда вся аптека размещалась в одной комнате, они превратились в большие фармацевтические лаборатории, которые включали в себя помещение для приема посетителей, кладовые, где размельчались и хранились лекарства и сырье, и собственно лаборатории с печью и дистилляционным аппаратом (рис. 94).

Начиная с XV в. с особым старанием культивировались аптекарские ботанические сады; их называли также садами здоровья – Hortus sanitatis. От этого латинского названия произошло русское – вертоград (т. е. сад, цветник). В XVI-XVII вв. вертограды широко распространились на Руси. В качестве лекарственного сырья использовались также минеральные вещества и части животных. Большое значение имели заморские путешествия, из которых привозились иноземные лекарственные средства.

Представления о лечебном действии многих медикаментов в то время часто были далеки от истины. Так, в течение почти двух тысячелетий (с I по XX век) существовало мнение о том, что териак является универсальным средством против всех болезней. Его составляли сами врачи при большом скоплении народа более чем из 70 компонентов, а затем выдерживали в течение полугода: причем особой славой пользовался териак, приготовленный в г. Венеции.

Аптекари эпохи Возрождения, как и другие профессионалы, внесли большой вклад в формирование культуры своего времени. Они занимали высокое положение в обществе, однако их деятельность регламентировалась государством. В середине XVI в. начали появляться первые фармакопеи, в которых перечислялись используемые в данном городе или государстве лекарства, их состав, применение и стоимость. Так было положено начало официальному регулированию цен на медикаменты в Европе.

⇐ Предыдущая12131415161718192021Следующая ⇒

Читайте также:

Билет 4. Роль отечественных ученых в развитии физиологии.

Предыдущая12345678910111213141516Следующая

Первым русским физиологом и доктором медицинских наук был один из выдающихся сподвижников Петра I П.

Становление физиологии как науки. История развития физиологии.

В. Посников (родился в 1676 г.). П. В. Посников ставил перед собой задачу — экспериментально изучить причину наступления смерти.

Многое сделал для развития физиологии знаменитый русский ученый М. В. Ломоносов (1711-1765). Он не только впервые сформулировал закон сохранения материи и превращения энергии, но и разработал научные основы процесса окисления. Позднее его выводы были подтверждены французским химиком Лавуазье, открывшим кислород. Представления М. В. Ломоносова в дальнейшем были положены в основу учения о дыхании. М. В. Ломоносов впервые сформулировал трехкомпонентную теорию цветового зрения, дал классификацию вкусовых ощущений, высказал мысль, чтоорганизм является источником образования тепла.

Основоположником экспериментальной физиологии является профессор Московского университета А. М. Филомафитский (1802-1849), изучавший вопросы, связанные с физиологией дыхания, переливанием крови, применением наркоза. А. М. Филомафитский написал первый русский учебник по физиологии:

Начало оперативно-хирургическому методу изучения процессов пищеварения положено хирургом В. А. Басовым. Большой вклад в развитие отечественной физиологии внесли также А. Т. Бабухин, установивший двустороннее проведение возбуждения по нервному волокну, В. Ф. Овсянников, описавший сосудодвигательный центр в продолговатом мозге, Н. А. Миславский изучивший особенности расположения дыхательного центра, В. Я. Данилевский, обнаруживший наличие электрических колебаний в центральной нервной системе, В. Ю. Чаговец, сформулировавший основные принципы ионной теории возбуждения.

Огромное влияние на формирование материалистических традиций в отечественной физиологии оказали работы революционных демократов 60-х годов XIX столетия Н. Г. Чернышевского, А. И. Герцена, В. Г. Белинского, Н. А. Добролюбова, Д. И. Писарева. В своих произведениях они развивали демократические идеи, горячо пропагандировали достижения естественных наук и материалистическое мировоззрение. Среди физиологов-материалистов, воспринявших идеи русских просветителей-демократов, на первое место надо поставить И. М. Сеченова и И. П. Павлова.Мировое признание получило открытие И. М. Сеченовым явления центрального торможения (1862), что послужило основой для дальнейшего изучения взаимоотношений процессов возбуждения и торможения в нервной системе.

Изучение физиологии центральной нервной системы привело И. М. Сеченова к открытию явления суммации нервных импульсов. Он обнаружил периодичность электрических колебаний в продолговатом мозге.

Непосредственным продолжателем исследований И. М. Сеченова явился его ученик Н. Е. Введенский (1852-1922), профессор Петербургского университета. Н. Е. Введенский разработал новый метод телефонической регистрации электрических явлений в живых тканях. Используя этот метод, он показал, что процесс возбуждения зависит не только от раздражителя, но и от состояния возбудимой ткани. Н. Е. Введенский экспериментально доказал малую утомляемость нервных волокон. Им были установлены единство процессов возбуждения и торможения, их неразрывная связь. Н. Е. Введенский разработал учение о парабиозе — универсальной реакции живой ткани на повреждающие воздействия.

Идеи Н. Е. Введенского продолжал развивать его ученик и преемник работы по кафедре физиологии Ленинградского университета А. А. Ухтомский (1875-1942). Он создал учение о доминанте — господствующем очаге возбуждения в центральной нервной системе при определенных условиях.

Выдающуюся роль в развитии отечественной и мировой физиологической науки сыграл И. П. Павлов (1849-1936).Научная деятельность И. П. Павлова развивалась в трех направлениях: первое (1874-1889) связано с изучением вопросов физиологии кровообращения, второе (1889-1901) — физиологии пищеварения, третье (1901-1936) — высшей нервной деятельности животных и человека.

Изучение функций высших отделов центральной нервной системы животных позволило вплотную подойти к раскрытию законов деятельности головного мозга человека. И. П. Павлов создал учение о типах высшей нервной деятельности, которое имеет не только теоретическое, но и практическое значение.

Вершиной творчества И. П. Павлова является его учение о сигнальных системах коры головного мозга. И. П. Павлов показал качественные особенности высшей нервной деятельности человека, изучил и описал механизмы, с помощью которых осуществляется абстрактное мышление, присущее только человеку.

Предыдущая12345678910111213141516Следующая

Краткая история физиологии

Физиология обязана своим возникновением потребностям медицины, а также стремлению человека познать себя, сущность и проявления жизни на различных уровнях ее организации. Потребность сохранения жизни человека была на всех этапах его развития, и уже в древние времена формировались элементарные представления о деятельности организма человека, являясь обобщением накопленного опыта человечества. Отец медицины Гиппократ (460- 377 гг. до н. э.) представлял организм человека как некое единство жидких сред и психического склада личности, подчеркивал связь человека со средой обитания и то, что движение является основной формой этой связи. Это определяло его подход к комплексному лечению больного. Аналогичный в принципе подход был характерен для врачей древнего Китая, Индии, Ближнего Востока и Европы.

В средние века господствовали далекие от реалий представления, основанные на постулатах римского анатома Галена, и засилие церкви определило неопределимую преграду между телом и душой.

Эпоха Возрождения (XVI-XVII века) с ее возросшими потребностями общественного производства пробудила к жизни науку и культуру, а несомненные успехи физики и химии, обращение к ним врачей определили стремление объяснить деятельность организма человека на основе происходящих в нем химических (ятрохимия) и физических (ятрофизика) процессов. Однако уровень знаний наук того времени, конечно же, не мог составить сколько-нибудь полное и адекватное представление о физиологических функциях.

Вместе с тем изобретение микроскопа и углубление знаний о микроскопическом строении тканей животных побуждает к исследованию функционального назначения открываемых структур. Успехи химии и изучения кругооборота веществ в природе направляют интересы человека к судьбе поступающих в его организм веществ, что становится предметом исследовательского интереса. Совершенствование точных наук, естествознания в целом и философии определяет обращение человеческой мысли к механизмам движения. Так, Р. Декарт (1596- 1650) формулирует рефлекторный принцип организации движений, в основе которого лежит побуждающий их стимул.

Особое место в науке о человеке сыграло открытие английским врачом В. Гарвеем (1578-1657) кровообращения. Обладая обширными анатомическими знаниями, В. Гарвей проводил экспериментальные исследования на животных и наблюдения на людях, основал физиологию как науку, основным методом которой является эксперимент. Официальной датой возникновения физиологии человека и животных как науки принят 1628 г. - год выхода в свет трактата В. Гарвея «Анатомическое исследование о движении сердца и крови у животных». Это произведение послужило стимулом к изучению деятельности организма в экспериментах на животных как основного объективного источника знаний.

В XVII веке выполняется ряд исследований по физиологии мышц, дыхания, обмена веществ. В Европе в XVIII веке возникает учение о «животном электричестве» (Л. Гальвани, 1737-1798), переросшее в один из ведущих разделов современной науки - электрофизиологию. Получает дальнейшее развитие принцип рефлекторной деятельности (И. Прохаска, 1749-1820). Вносится много ценного в понимание деятельности систем кровообращения (С. Хелс, 1667-1761), дыхания (Д. Пристли, 1733-1804), обмена веществ (А. Лавуазье, 1743-1794).

В этот период открывается Российская академия наук (1724), где Д. Бернулли выполнил первые в России экспериментальные исследования движения крови по кровеносным сосудам. В России солидные физиологические открытия сделаны М. В. Ломоносовым (1711-1765).

XIX век - период расцвета аналитической физиологии, когда были сделаны выдающиеся открытия практически по всем физио­логическим системам. Это происходило одновременно с бурным ростом естествознания, обретением фундаментальных знаний о при­роде: открытие закона сохранения энергии, клеточного строения организмов, формирование основ учения об эволюции жизни на Земле. Особое значение в развитии физиологии сыграли новые методические подходы и изобретения выдающихся физиологов той поры, о чем сказано в предыдущем разделе. Все это определило в середине XIX века выделение физиологии в самостоятельную науку. В университетах России, Англии создаются физиологические лабора­тории, интенсифицируются физиологические исследования в Европе.

Во второй половине XIX века - начале XX столетия физио­логия в России становится одной из передовых в мировой науке, в чем выдающуюся роль сыграли столичные школы И. М. Сеченова (1829-1905), И. П. Павлова (1849-1936), известные школы Ка­зани, Киева, Одессы, Томска, Екатеринбурга. Российская наука при всей ее самобытности, методологической оригинальности под­держивала теснейшие творческие связи с ведущими физиологиче­скими школами Западной Европы, а затем и Америки.

XX век - период интеграции и специализации наук, не обошел величайшими открытиями и физиологию. В 40-50-х годах ут­верждается мембранная теория биоэлектрических потенциалов (А.Л. Ходжкин, Э.Ф.Хаксли, Б. Катц). Роль этой теории в ус­тановлении ионных механизмов возбуждения нейронов в 1963 г. отмечается Нобелевской премией (Д. К. Экклс, Э. Ф. Хаксли, А. Л. Ходжкин). Делаются принципиальные открытия в области цитофизиологии и цитохимии.

Конец XIX и начало XX века - период определяющих успехов в области физиологии нервов и мышц как возбудимых тканей (Дюбуа-Реймон, Э. Ф. Пфлюгер, П. Г. Гейденгайн, Ю. Бернштейн, Г. Л. Гельмгольц). В России особенно заметные исследования в этом разделе науки выполняются Н. Е. Введенским (1852-1922),

А. И. Бабухиным (1835-1891), Б. Ф. Вериго (1860-1925),

В. Я. Данилевским (1852-1939), В. Ю. Чаговцем (1873-1941). За открытия теплообразования в мышцах А. В. Хиллу (1886-1977) и О. Ф. Мейергофу (1884-1951) присуждается Нобелевская премия. Достижением XX века, отмеченным Нобелевской премией 1936 г., явилось открытие химического механизма передачи нервного им­пульса в синапсах О. Леви (1873-1961) и Г. X. Дейлом (1875- 1968). Развитие этого направления в трудах У. Эйлера, Д. Аксель рода и Б. Катца было отмечено Нобелевской премией в 1970 г. А. Д. Эрлангер и Г. Гассер были отмечены в 1944 г. той же премией за успехи в изучении проведения импульсов по нервным волокнам. В решение проблемы возбуждения нервов и мышц в этот период существенный вклад вносят и советские физиологи - А. А. Ухтомский (1875-1942), А. Ф.Самойлов (1867-1930), Д. С. Воронцов (1886-1965).

XIX и XX века ознаменованы многими значительными успехами в изучении функций мозга.

Выдающаяся роль в исследовании функций мозга принадлежит И. М. Сеченову (1829-1905), который в 1862 г. открыл явление торможения в ЦНС, что во многом определило последующие успехи исследований координации рефлекторной деятельности. Идеи, изложенные И. М. Сеченовым в книге «Рефлексы головного мозга» (1863), определили то, что к рефлекторным актам были отнесены психические явления, внесли новые представления в механизмы деятельности мозга, наметили принципиально новые подходы к его дальнейшим исследованиям. При этом ученый подчеркнул определяющую роль внешней среды в рефлекторной деятельности мозга.

На качественно новый уровень вывел теорию рефлекторной деятельности мозга И. П. Павлов (1849-1936), создав учение о высшей нервной деятельности (поведении) человека и животных, ее физиологии и патологии. И. П. Павлов основал школу отечественных физиологов, внесшую выдающийся вклад в мировую науку.

В числе учеников и последователей И. П. Павлова академики П. К. Анохин, Э. А. Астратян, К. М. Быков, Л. А. Орбели и многие другие, создавшие отечественные физиологические научные школы.

Идеи И. П. Павлова о рефлекторной деятельности мозга получили дальнейшее развитие в учении о функциональных системах П. К. Анохина (1898-1974), которые являются основой организации сложных форм поведенческой деятельности и обеспечения гомеостаза организма человека и животных. Трудно переоценить вклад в физиологию нервной системы И. С. Бериташвили (1885-1975), открывшего фундаментальные закономерности в деятельности мозга и создавшего ряд оригинальных теорий о ее организации.

Э. А. Астратян (1903-1981) - автор ряда фундаментальных работ, в которых развивал основные положения И. П. Павлова о высшей нервной деятельности. К. М. Быков (1887-1959) основал учение о двусторонней связи коры головного мозга с внутренними органами, о кортико-висцеральной патологии. Его ученик В. Н. Черниговский (1907-1981) обогатил науку учением об интероцепции висцеральных органов, регуляции системы крови.

Л. А. Орбели (1882-1958) основал учение об адаптационно-трофических влияниях симпатической нервной системы на соматические и вегетативные функции организма, явился одним из основателей эволюционной физиологии.

Л. С. Штерн (1878-1968) создала учение о гематоэнцефалическом и гистогематическом барьерах, обеспечивающих гомеостатические функции в организме человека и животных.

Велика заслуга А. А. Ухтомского (1875-1942) в изучении физиологии ЦНС. Его учение о доминанте - «основном принципе деятельности» мозга и поныне питает идеи организации целенаправленной деятельности человека и животных.

Несомненно, что вклад отечественных физиологов в мировую науку о мозге оригинален и общепризнан, многое сделано и в изучении локализации функций в мозге (В. М. Бехтерев, М. А. Миславский, Ф. В. Овсянников и др.), в разработке методов его изучения.

В конце XIX и в XX веке физиология мозга успешно развивается в Европе и Америке. В большой мере это связано с созданием нейронной теории рефлекторной деятельности мозга на основе его гистологического исследования К. Гольджи (1844-1926) и С. Рамон-и-Кахалем (18512-1934), удостоенными Нобелевской премии в 1906 г., а затем Лоренте де Но.

Выдающуюся роль в изучении функций центральной нервной системы сыграл Ч. С. Шеррингтон (1856-1952), разработавший и сформулировавший основные принципы координационной деятельности мозга. Эти работы были удостоены в 1932 г. Нобелевской премии. Премию одновременно получил и электрофизиолог

Э. Д. Эдриан (1889-1977), также внесший существенный вклад в современные представления о деятельности мозга. Заслуга Ч. С. Шеррингтона и в том, что он воспитал плеяду физиологов, которым наука обязана многими выдающимися открытиями (Р. Гранит, Р. Магнус, У. Пенфилд, Дж. Экклс и др.).

Р. Магнусу (1873-1927) наука обязана учением об установочных рефлексах, распределяющих тонус скелетных мышц. Р. Гранит, X. К. Хартлайнен и Д. Уолд в 1967 г., а Д. Хьюбел и Т. Визел в 1981 г. были удостоены Нобелевской премии за работы по физиологии и биохимии зрительного анализатора. В этот раздел науки внесли достойный вклад также отечественные ученые П. П. Лазарев (1878-1942) и В. С. Кравков (1893-1951).

Современная физиология ретикулярной формации мозга создана экспериментальными исследованиями Г. Мэгуна и Д. Моруцци. Следует подчеркнуть, что основой для проведения этих исследований послужили результаты научных работ И. М. Сеченова и В. М. Бехтерева.

Конечно, функции мозга привлекали и привлекают к себе внимание многих выдающихся ученых мира и в этой области успешные поиски продолжаются. Об основных их результатах сказано в соответствующих главах учебника с упоминанием имен и ныне здравствующих физиологов.

Физиология висцеральных органов в истории науки занимает весьма заметное место со времени возникновения физиологии до наших дней. XIX и XX века ознаменованы крупными открытиями по механизмам регуляции деятельности сердца и кровеносных сосудов: К.Людвиг (1816-1895), И. Ф. Цион (1842-1912), К. Бер нар (1813-1878), Ф.В.Овсянников (1827-1906), В. Эйнтховеи (1860-1927), Э. Г. Стерлинг (1866-1927) и др.

За исследования капиллярного кровообращения в 1920 г. Нобелевской премии был удостоен А. Крог (1874-1949). В советское время крупный научный вклад в физиологию сердечно-сосудистой системы внесли В. В. Парин (1903-1971), В. Н. Черниговский, А. М. Чернух и др.

Богат XX век успехами в области физиологии дыхания, особенно его регуляции (Н. А. Миславский, К. Гейманс, Д. С. Холдейн). За работы в этой области К. Гейманс (1892-1968) получил Нобелевскую премию в 1939 г. Крупные открытия были сделаны по биохимии газообмена и клеточного дыхания (А. Крог, Д. Баркрофт), а О. Г. Варбургу (1883-1970) за открытие ферментативного механизма клеточного дыхания была присуждена Нобелевская премия в 1931 г. Велик вклад в физиологию дыхательного центра М. В. Сергиевского (1898-1982).

Физиологией пищеварения в разное время занимались выдающиеся физиологи Европы и Америки (К. Людвиг, К. Бернар, Р. Геденгайн, Э. Старлинг и др.), но «пересоздал физиологию пищеварения» (так сказано в дипломе Нобелевского лауреата 1904 г.) И. П. Павлов - первый среди физиологов мира и первый Российский ученый, удостоенный этого высокого звания.

История развития физиологии

Внутриклеточному пищеварению были посвящены работы еще одного Нобелевского лауреата - И. И. Мечникова (1845-1916). В лаборатории И. П. Павлова работали Е. С. Лондон, И. П. Разенков, Г. В. Фольборт, Б. П. Бабкин и др., которые продолжили славные традиции первооткрывателей в области физиологии пищеварения. Выдающуюся роль в этой области науки сыграл А. М. Уголев (1926-1992), которому принадлежат честь открытия мембранного кишечного пищеварения и определение его места в пищеварительном конвейере, современные концепции эндокринной деятельности желудочно-кишечного тракта, эволюции секреторных процессов, теория адекватного питания и другие оригинальные теории и гипотезы в физиологии.

В физиологии висцеральных систем формировались основные концепции функциональной организации автономной (вегетативной) нервной системы. Об этих страницах истории физиологии достаточно подробно написано в разделе 4.3 учебника.

XX век богат открытиями в области изучения деятельности эндокринных желез. В 1923 г. Нобелевская премия присуждена Ф. Г. Бантингу (1891-1941). Д. Маклеоду (1876-1935) и Ч. Г. Бесту (1899-1978) за работы по инсулину. Этой премии в 1947 г. удостоен Б. А. Усай (1887-1971) за открытия в области физиологии гипофиза. Работы по изучению функции этой железы были отмечены и в 1977 г. - Р. Гиймен, Э. В. Шалли и Р. С. Ялоу. В 1950 г. Нобелевской премии за исследование функции надпочечников удостоены Ф. Ш. Хенч (1896-1965), Э. К. Кендалл (1886-1972) и Т. Рейхштейн (р. в 1897).

В 1971 г. Нобелевским лауреатом стал Э. У. Сазерленд (1915- 1974), который открыл роль АМФ в регуляции обмена веществ, показал его значение как посредника в гормональном воздействии на обмен веществ.

Отечественным физиологам принадлежит приоритет в создании искусственного сердца (А. А. Брюхоненко), записи ЭЭГ (В. В. Правдич-Неминский), создании таких важных и новых направлений в науке, как космическая физиология, физиология труда, физиология спорта, исследовании физиологических механизмов адаптации, регуляции механизмов реализации многих физиологических функций. Эти и многие другие исследования имеют первостепенное значение для медицины.

История развития физиологии, как и других биологических наук, берет свое начало в глубокой древности. Человек всегда интересовался строением и функциями организма, первые сведения об этом были обобщены и изложены в сочинениях «отца медицины» Гиппократа. Строение органов пищеварения, кровеносных сосудов описал древне–римский врач анатом Гален (II век н.э.). Важную роль в изучении благотворного влияния гигиенических факторов (питания, солнечного света, воздуха) и нервной системы на организм человека сыграл ученый (XI век н.э.) Абу–Али–Ибн–Сина (Авиценна).

Основоположником экспериментальной физиологии и эмбриологии считается английский анатом и физиолог В. Гарвей (1578–1657), который предложил методику исследований путем рассечения тканей (вивисекцию). Это позволило сделать важные открытия в функциях сердечно-сосудистой системы. На основании своих многочисленных наблюдений Гарвей дал обоснованное представление о кровообращении. Именно он впервые высказал мысль, что «все живое происходит из яйца».

В дальнейшем учение о кровообращении было существенно дополнено итальянским биологом и врачом М. Мальпиги, который в 1966 г. открыл наличие капилляров.

Основоположником экспериментальной физиологии в России является профессор Московского университета А.М. Филомафитский (1807–1849), автор первого учебника по физиологии.

Внедрение рассечения тканей послужило мощным толчком для изучения различных функций организма. Первые, хотя во многом и упрощенные, представления о рефлексе были сформулированы Р. Декартом (1596–1650), а в последствии развиты чешским ученым Георгом Прохаско, который ввел в науку термин «рефлекс».

Французский ученый Ф. Можанди (1785–1855) обнаружил в нервных стволах раздельное наличие чувствительных и двигательных нервных волокон, что позволило лучше представить нервные пути регуляции функций органов и систем организма. Немецкий естествоиспытатель И. Мюллер - автор трудов по физиологии ЦНС, органов чувств (зрения, слуха), некоторых желез внутренней секреции.

В 1771 г. итальянский физик и анатом Л. Гольвани выявил возникновение в мышцах электрических токов. Эти исследования продолжили ученики Мюллера - немецкие физиологи Дюбуа–Реймон (1818–1896), Гельмгольц (1821–1894).

Советские физиологи В.Ю. Чаговец (1873–1941) и А.Ф. Самойлов (1867–1930) впервые высказали мысль о химическом механизме передачи возбуждения в синапсах и что в основе возникновения токов в тканях лежит изменение проницаемости клеточных мембран для разных ионов. В 40–50-х годах ХХ ст. эта идея послужила основанием для выдающегося обоснования мембранной теории возникновения биоэлектрических потенциалов в тканях (А. Ходжкин, А.Ф. Хаксли и Б. Катц).


Значительный интерес представляют работы английского нейрофизиолога Ч.С. Шеррингстона (1859–1952). Советский физиолог И.С. Бериташвили (1885–1974) обосновал положение о дендритном торможении и психонервной деятельности человека.

В области физиологии висцеральных систем заслуживают внимания работы английского физиолога У.Х. Гаскелла (1847–1914), посвященные изучению функции вегетативной нервной системы. Д.Н. Ленгли (1852–1925) назвал ее «автономной», подчеркнув этим ее независимость от высших отделов нервной системы. В противоположность этому, академик К.М. Быков (1886–1959) выявил наличие условнорефлекторных реакций в деятельности внутренних органов, показав что вегетативные функции не автономны и подчинены влияниям высших отделов центральной нервной системы.

Ф. Можанди, К. Бернар, Р. Гейденгайн, И.П. Павлов в многочисленном эксперименте на разных животных обосновали представление о трофической роли нервной системы. И.П. Павлов считал, что функция каждого органа находится под тройным контролем - нервно–функциональным, сосудистым и трофическим.

Л.А. Орбели (1882–1958) совместно с А.Г. Гинецинским (1895–1962) занимались изучением влияния симпатической нервной системы на различные функции организма, что дало возможность впоследствии Л.А. Орбели сформулировать учение об адаптационно–трофической роли симпатической нервной системы. К.Ф. Людвиг (1816–1895), Ф.В. Овсянников (1827–1906) установили наличие в продолговатом мозге сосудодвигательного центра.

К. Людвиг и И.Ф. Цион в 1866 г обнаружили центростремительный нерв, замедляющий работу сердца и снижающий кровяное давление. Этот нерв был назван ими депрессором. В лаборатории Людвига братья Ционы продолжили исследования по изучению влияния симпатических нервов на работу сердца. Кроме того, К. Людвиг является автором изобретения кимографа и внедрения в физиологические исследования графического метода регистрации артериального давления. Впоследствии этот метод получил широкое распространение при исследовании многих других функций организма.

В результате исследований на лягушках и кроликах, А.П. Вальтер (1817–1889) и К. Бернар (1813–1878) установили, что симпатические нервы суживают просвет кровеносных сосудов.

Английский физиолог Э. Старлинг (1866–1927), изучая динамику сердечной деятельности, заметил, что сила сердечных сокращений зависит от количества притекаемой к сердцу крови и длины его мышечных волокон к моменту сокращения. Важным моментом в физиологии было открытие Н.А. Миславским дыхательного центра в продолговатом мозге.

Академик П.К. Анохин (1898–1974) выдвинул идею о функциональном взаимодействии внутренних органов и систем организма с центральной нервной системой по принципу их обратной связи, что во многом расширило прежние представления о нервном механизме регуляции функций.

Основатель физиологии в США врач У. Бомон (1785–1853) проводил многолетние наблюдения желудочного пищеварения у человека, имеющего после ранения незаживающий желудочный свищ.

Неоценимый вклад в физиологию процессов пищеварения внесли исследования К. Бернара, Р. Гейденгайна, Б.К. Бабкина. В этом направлении работали В.А. Басов, Тири, Вела, предложившие хирургические методики получения соков разных пищеварительных желез.

У. Бейлис и Э. Старлинг положили начало изучению гуморальных факторов регуляции пищеварения, а И.П. Разенков (1888–1954) успешно исследовал нервно-гуморальный механизм регуляции работы органов пищеварения. А.М. Уголев (1926–1992) разработал учение о пристеночном (мембранном) пищеварении.

Всемирную известность получили работы И.М. Сеченова (1829–1905). Ему принадлежит честь открытия торможения в центральной нервной системе, что дало возможность по-новому рассматривать регулирующее влияние нервной системы на различные функции организма. Он установил, что в основе деятельности коры головного мозга лежит рефлекторный механизм.

И.М. Сеченов успешно работал в Германии в лабораториях Дюбуа–Реймона, Людвига, Гельмгольца. Вернувшись в Россию, он создал русскую физиологическую школу, из которой вышли такие крупные ученые, как В.В. Пашутин, А.Ф. Самойлов, М.Н. Шатерников, Н.Е. Введенский и др. За выдающиеся заслуги в науке И.П. Павлов назвал И.М. Сеченова «отцом русской физиологии».

Занимаясь проблемами нервно-мышечной физиологии, Н.Е. Введенский (1852–1922) сформулировал положение о единстве процессов возбуждения и торможения, доказал что при определенных условиях процесс возбуждения может перейти в торможения. Развивая учение Введенского о лабильности и парабиозе, А.А. Ухтомский (1875–1942) создал теорию о доминанте.

Велика роль и заслуга в развитии физиологии вообще и, в частности, физиологии пищеварения академика И.П. Павлова (1849–1936). Именно под его руководством были усовершенствованы и разработаны новые оригинальные методики ряда хирургических операций по наложению фистул. Павловская методика хронического (фистульного) эксперимента позволила создать принципиально новое направление в изучении физиологии целостного организма и во взаимосвязи его с внешней средой.

Работы И.П. Павлова легли в основу и физиологии сельскохозяйственных животных.

И.П. Павлова отличали глубина и многосторонность исследований. Он посвятил свой пытливый и наблюдательный ум изучению физиологии сердечно-сосудистой системы, пищеварения, центральной нервной системы и высшей нервной деятельности, предложил совершенно новый в физиологии аналитико-синтетический подход к познанию сущности физиологических процессов.

Недаром в 1904 г. И.П. Павлов был удостоен Нобелевской премии, а в 1935 г., за год до смерти, Международный физиологический конгресс присвоил ему почетное звание «старейшины физиологов мира».

Н.Ф. Попов, И.А. Барышников, П.Ф. Солдатенков, Н.В. Курилов, С.С. Полтырев, В.В. Савич, Н.У. Базанова посвятили свою научную деятельность изучению пищеварения, обмена веществ у разных видов животных, А.А. Сысоев - размножению и лактации, К.Р. Викторов - физиологии дыхания и пищеварения у птиц. Н.Ф. Попов работал в области физиологии ЦНС, ВНД, физиологии пищеварения у жвачных животных и лошадей. Г.И. Азимовым выполнены исследования по изучению ВНД, лактации, желез внутренней секреции.

Д.Я. Криницын исследовал механизмы секреции пищеварительных соков и моторной функции органов пищеварения. А.А. Кудрявцев - обмен веществ и энергии, ВНД, анализаторы.

И сейчас продолжают трудиться А.А. Алиев, Н.У. Базанова, В.И. Георгиевский, А.Н. Голиков, С.В. Стояновский, каждый из которых подготовил большое количество кандидатов и докторов наук.

Многие годы в сельскохозяйственных вузах изучают физиологию по учебникам К.Р. Викторова, Г.И. Азимова, А.А. Сысоева, А.П. Костина, А.Н. Голикова, Н.У. Базановой, В.И. Георгиевского.

В Беларуси работали академик И.А. Булыгин, профессора А.Н. Чередкова, И.К. Слесарев и их многочисленные ученики, посвятившие свои работы изучению физиологии нервной системы, пищеварения, обмена веществ.

Для развития физиологии пищеварения большое значение имеют работы профессора В.Ф. Лемеша, который многие годы возглавлял Витебский ветеринарный институт. В своих многосторонних исследованиях он изучал эффективность использования животными различных кормов и кормовых смесей. В этом же институте профессор Ф.Я. Бернштейн и его ученики занимались изучением роли минеральных веществ в обменных процессах у животных.

Ученые нашей республики внесли существенный вклад в изучение физиологии пищеварения, разработали оригинальные методики получения пищеварительных соков, предложили новые корма и добавки, улучшающие пищеварительные процессы. Большое количество их работ посвящено изучению резистентности животных и птиц в онтогенезе, изысканию наиболее эффективных методов ее стимуляции.

Научные исследования сельскохозяйственных физиологов всегда были направлены на повышение продуктивности, сохранности животных, их адаптации к условиям внешней среды.

Вильям Гарвей. Клод Бернар.

Карл Людвиг. И.М. Сеченов.

Н.Е. Введенский. А.Ф. Самойлов.

Ф.В. Овсянников. И.П. Павлов.