Влияние физических факторов на микроорганизмы. Влияние условий внешней среды на микроорганизмы. Тепловые методы обработки пищевых продуктов

Жизнь микроорганизмов находится в тесной зависимости от условий окружающей среды. Все факторы окружающей среды, оказывающие влияние на микроорганизмы, можно разделить на три группы: физические, химические и биологические, благоприятное или губительное действие которых зависит как от природы самого фактора, так и от свойств микроорганизма.

Физические факторы

Из физических факторов наибольшее влияние на развитие микроорганизмов оказывают температура, высушивание, лучистая энергия, ультразвук.

Температура . Жизнедеятельность каждого микроорганизма ограничена определенными температурными границами. Эту температурную зависимость обычно выражают тремя основными точками: минимум - температура, ниже которой размножение микробных клеток прекращается; оптимум - наилучшая температура для роста и развития микроорганизмов; максимум - температура, выше которой жизнедеятельность клеток ослабляется или прекращается. Оптимальная температура обычно соответствует температурным условиям естественной среды обитания.

Все микроорганизмы по отношению к температуре подразделяются на психрофилы, мезофилы и термофилы.

Психрофилы (от греч. psychros - холодный, phileo - люблю), или холодолюбивые микроорганизмы, растут при относительно низких температурах: минимальная температура - 0° С, оптимальная - 10-20° С, максимальная - 30° С. Эта группа включает микроорганизмы, обитающие в северных морях и океанах, почве, сточных водах. Сюда же относятся светящиеся и железобактерии, а также микробы, вызывающие порчу продуктов на холоду (ниже 0° С).

Мезофилы (от греч. mesos - средний) - наиболее обширная группа, включающая большинство сапрофитов и все патогенные микроорганизмы. Оптимальная температура для них 28-37° С, минимальная - 10° С, максимальная - 45° С.

Термофилы (от греч. termos - тепло, жар), или теплолюбивые микроорганизмы, развиваются при температуре выше 55° С, температурный минимум для них 30° С, оптимум - 50-60° С, а максимум - 70-75° С. Они встречаются в горячих минеральных источниках, поверхностном слое почвы, самонагревающихся субстратах (навозе, сене, зерне), кишечнике человека и животных. Среди термофилов много споровых форм.

Высокие и низкие температуры оказывают различное влияние на микроорганизмы. Одни более чувствительны к высоким температурам. Причем, чем выше температура за пределами максимума, тем быстрее наступает гибель микробных клеток, что обусловлено денатурацией (свертыванием) белков клетки.

Вегетативные формы бактерий мезофилов погибают при температуре 60° С в течение 30-60 мин, а при 80-100° С - через 1-2 мин. Споры бактерий гораздо устойчивее к высоким температурам. Например, споры бацилл сибирской язвы выдерживают кипячение в течение 10-20 мин, а споры клостридий ботулизма - 6 ч. Все микроорганизмы, включая споры, погибают при температуре 165-170° С в течение часа (в сухожаровом шкафу) или при действии пара под давлением 1 атм (в автоклаве) в течение 30 мин.

Действие высоких температур на микроорганизмы положено в основу стерилизации - полного освобождения разнообразных объектов от микроорганизмов и их спор (см. ниже).

К действию низких температур многие микроорганизмы чрезвычайно устойчивы. Сальмонеллы тифа и холерный вибрион длительно выживают во льду. Некоторые микроорганизмы остаются жизнеспособными при температуре жидкого воздуха (-190° С), а споры бактерий выдерживают температуру до -250° С.

Только отдельные виды патогенных бактерий чувствительны к низким температурам (например, бордетеллы коклюша и паракоклюша, нейссерии менингококка и др.). Эти свойства микроорганизмов учитывают в лабораторной диагностике и при транспортировке исследуемого материала - его доставляют в лабораторию защищенным от охлаждения.

Действие низких температур приостанавливает гнилостные и бродильные процессы, Что широко применяется для сохранения пищевых продуктов в холодильных установках, погребах, ледниках. При температуре ниже 0° С микробы впадают в состояние анабиоза - наступает замедление процессов обмена веществ и прекращается размножение. Однако при наличии соответствующих температурных условий и питательной среды жизненные функции микробных клеток восстанавливаются. Это свойство микроорганизмов используется в лабораторной практике для сохранения культур микробов при низких температурах. Губительное действие на микроорганизмы оказывает также быстрая смена высоких и низких температур (замораживание и оттаивание) - это приводит к разрыву клеточных оболочек.

Высушивание . Для нормальной жизнедеятельности микроорганизмов необходима вода. Высушивание приводит к обезвоживанию цитоплазмы, нарушению целостности цитоплазматической мембраны, вследствие чего нарушается питание микробных клеток и наступает их гибель.

Сроки отмирания разных видов микроорганизмов под влиянием высушивания значительно отличаются. Так, например, патогенные нейссерии (менингококки, гонококки), лептоспиры, бледная трепонема и другие погибают при высушивании через несколько минут. Холерный вибрион выдерживает высушивание 2 сут, сальмонеллы тифа - 70 сут, а микобактерии туберкулеза - 90 сут. Но высохшая мокрота больных туберкулезом, в которой возбудители защищены сухим белковым чехлом, остается заразной 10 мес.

Особой устойчивостью к высушиванию, как и к другим воздействиям окружающей среды, обладают споры. Споры бацилл сибирской язвы сохраняют способность к прорастанию в течение 10 лет, а споры плесневых грибов - до 20 лет.

Неблагоприятное действие высушивания на микроорганизмы издавна используется для консервирования овощей, фруктов, мяса, рыбы и лекарственных трав. В то же время, попав в условия повышенной влажности, такие продукты быстро портятся из-за восстановления жизнедеятельности микробов.

Для хранения культур микроорганизмов, вакцин и других биологических препаратов широко применяют метод лиофильной сушки. Сущность метода состоит в том, что предварительно микроорганизмы или препараты подвергают замораживанию, а затем их высушивают в условиях вакуума. При этом микробные клетки переходят в состояние анабиоза и сохраняют свои биологические свойства в течение нескольких месяцев или лет.

Лучистая энергия . В природе микроорганизмы постоянно подвергаются воздействию солнечной радиации. Прямые солнечные лучи вызывают гибель многих микроорганизмов в течение нескольких часов, за исключением фотосинтезирующих бактерий (зеленых и пурпурных серобактерий). Губительное действие солнечного света обусловлено активностью ультрафиолетовых лучей (УФ-лучи). Они инактивируют ферменты клетки и повреждают ДНК. Патогенные бактерии более чувствительны к действию УФ-лучей, чем сапрофиты. Поэтому хранить микробные культуры в лаборатории лучше в темноте. В этом отношении демонстративен опыт Бухнера.

В чашку Петри с тонким слоем агара производят обильный посев какой-либо культуры бактерий. На наружную поверхность засеянной чашки наклеивают вырезанные из черной бумаги буквы, образующие, например, слово "typhus". Чашку, обращенную дном вверх, подвергают облучению прямыми солнечными лучами в течение 1 ч. Затем бумажки снимают, и чашку ставят на сутки в термостат при 37° С. Рост бактерий наблюдается лишь в тех местах агара, которые были защищены от действия УФ-лучей наклеенными буквами. Остальная часть агара остается прозрачной, т. е. рост микроорганизмов отсутствует (рис. 11).

Велико значение солнечного света как естественного фактора оздоровления внешней среды. Он освобождает от патогенных бактерий воздух, воду "естественных водоемов, верхние слои почвы.

Бактерицидное (уничтожающее бактерий) действие УФ-лучей используется для стерилизации воздуха закрытых помещений (операционных, перевязочных, боксов и т. д.), а также воды и молока. Источником этих лучей являются лампы ультрафиолетового излучения, бактерицидные лампы.

Другие виды лучистой энергии - рентгеновские лучи, α-, β-, γ-лучи оказывают губительное действие на микроорганизмы только в больших дозах, порядка 440-280 Дж/кг. Гибель микробов обусловлена разрушением ядерных структур и клеточной ДНК. Малые дозы излучений стимулируют рост микробных клеток. Микроорганизмы значительно устойчивее к радиоактивным излучениям, чем высшие организмы. Известны тионовые бактерии, обитающие в залежах урановых руд. Бактерии обнаруживали в воде атомных реакторов при концентрации ионизирующей радиации 20-30 кДж/кг.

Бактерицидное действие ионизирующего излучения используется для консервирования некоторых пищевых продуктов, стерилизации биологических препаратов (сывороток, вакцин и др.), при этом свойства стерилизуемого материала не изменяются.

В последние годы радиационным методом стерилизуют изделия для одноразового использования - полистироловые пипетки, чашки Петри, лунки для серологических реакций, шприцы, а также шовный материал - кетгут и др.

Ультразвук вызывает значительное поражение микробной клетки. Под действием ультразвука газы, находящиеся в жидкой среде цитоплазмы, активируются, и внутри клетки возникает высокое давление (до 10000. атм). Это приводит к разрыву клеточной оболочки и гибели клетки. Ультразвук используют для стерилизации пищевых продуктов (молока, фруктовых соков), питьевой воды.

Высокое давление . К механическому давлению бактерии и особенно их споры устойчивы. В природе встречаются бактерии, живущие в морях и океанах на глубине 1000-10000 м под давлением от 100 до 900 атм. Некоторые виды бактерий выдерживают давление до 3000-5000 атм, а бактериальные споры - даже 20000 атм.

Химические факторы

Влияние химических веществ на микроорганизмы различно в зависимости от природы химического соединения, его концентрации, продолжительности воздействия на микробные клетки. В зависимости от концентрации химическое вещество может быть источником питания или оказывать угнетающее действие на жизнедеятельность микроорганизмов. Например, 0,5-2% раствор глюкозы стимулирует рост микробов, а 20-40% растворы глюкозы задерживают размножение микробных клеток.

Многие химические соединения, оказывающие губительное действие на микроорганизмы, используются в медицинской практике в качестве дезинфицирующих веществ и антисептиков.

Химические вещества, используемые для дезинфекции, называют дезинфицирующими. Под дезинфекцией понимают мероприятия, направленные на уничтожение патогенных микроорганизмов в различных объектах окружающей среды. К дезинфицирующим веществам относят галлоидные соединения, фенолы и их производные, соли тяжелых металлов, некоторые кислоты, щелочи, спирты и др. Они вызывают гибель микробных клеток, действуя в оптимальных концентрациях, в течение определенного времени. Многие дезинфицирующие вещества оказывают вредное воздействие на ткани макроорганизма.

Антисептиками называют химические вещества, которые могут вызывать гибель микроорганизмов или задерживать их рост и размножение. Их используют с лечебной целью (химиотерапия), а также для обеззараживания ран, кожи, слизистых оболочек человека. Антисептическими свойствами обладают перекись водорода, спиртовые растворы йода, бриллиантового зеленого, растворы перманганата калия и др. Некоторые антисептические вещества (уксусная, сернистая, бензойная кислоты и др.) в дозах, безвредных для человека, применяют для консервирования пищевых продуктов.

По механизму действия химические вещества, обладающие противомикробной активностью, можно подразделить на несколько групп.

1. Поверхностно-активные вещества (жирные кислоты, мыла и прочие детергенты) вызывают снижение поверхностного натяжения, что приводит к нарушению функционирования клеточной стенки и цитоплазматической мембраны микроорганизмов.

2. Фенол, крезол и их производные вызывают коагуляцию микробных белков. Они используются для дезинфекции заразного материала в микробиологической практике и инфекционных больницах.

3. Окислители, взаимодействуя с микробными белками, нарушают деятельность ферментов, вызывают денатурацию белков. Активными окислителями являются хлор, озон, которые используют для обеззараживания питьевой воды. Хлорпроизводные вещества (хлорная известь, хлорамин) широко употребляют в целях дезинфекции. Окисляющими свойствами обладают перекись водорода, перманганат калия, йод и др.

4. Формальдегид применяют в виде 40% раствора (формалин) для дезинфекции. Он убивает вегетативные и споровые формы микроорганизмов. Формалин блокирует аминогруппы белков микробной клетки и вызывает их денатурацию.

5. Соли тяжелых металлов (ртуть, свинец, цинк, золото и др.) коагулируют белки микробной клетки, вызывая этим их гибель. Ряд металлов (серебро, золото, ртуть и др.) оказывают бактерицидное действие на микроорганизмы в ничтожно малых концентрациях. Это свойство получило название олигодинамического действия (от лат. oligos - малый, dinamys - сила). Доказано, что вода, находящаяся в сосудах из серебра, не загнивает, благодаря бактерицидному действию ионов серебра. Для профилактики бленнореи * новорожденных долгое время применяли 1% раствор нитрата серебра. Коллоидные растворы органических соединений серебра (протаргол, колларгол) используют также в виде местных антисептических средств.

* (Бленнорея - воспаление конъюнктивы глаза, вызванное гонококками. )

Сильным антимикробным действием обладают препараты ртути. Издавна для дезинфекции применяли бихлорид ртути, или сулему (в разведении 1:1000). Однако она оказывает токсическое действие на ткани макроорганизма и использование ее ограничено.

6. Красители (бриллиантовый зеленый, риванол и др.) обладают свойством задерживать рост бактерий. Растворы ряда красителей применяют в качестве антисептических средств, а также вводят в состав некоторых питательных сред для угнетения роста сопутствующей микрофлоры.

Губительное действие ряда физических и химических факторов на микроорганизмы составляет основу асептического и антисептического методов, широко используемых в медицинской и санитарной практике.

Асептика - система профилактических мероприятий, препятствующих микробному загрязнению объекта (раны, операционного поля, культур микроорганизмов и т. д.), основанная на физических методах.

Антисептика - комплекс мер, направленных на уничтожение микроорганизмов в ране, целом организме или на объектах внешней среды, с применением различных обеззараживающих химических веществ.

Биологические факторы

В естественных условиях обитания микроорганизмы существуют не изолированно, а находятся в сложных взаимоотношениях, которые сводятся в основном к симбиозу, метабиозу и антагонизму.

Симбиоз - это сожительство организмов различных видов, приносящих им взаимную пользу. При этом совместно они развиваются лучше, чем каждый из них в отдельности.

Симбиотические взаимоотношения существуют между клубеньковыми бактериями и бобовыми растениями, между мицелиальными грибами и сине-зелеными водорослями (лишайниками): Симбиоз молочно-кислых бактерий и спиртовых дрожжей используют для приготовления некоторых молочно-кислых продуктов (кефир, кумыс).

Метабиоз - такой вид взаимоотношений, при котором продукты обмена одного вида микроорганизмов создают необходимые условия для развития других. Например, гнилостные микроорганизмы, расщепляющие белковые вещества, способствуют накоплению в среде аммонийных соединений и создают благоприятные условия для роста и развития нитрифицирующих бактерий. А развитие анаэробов в хорошо аэрируемой почве было бы невозможно без аэробов, поглощающих свободный кислород.

Метабиотические взаимоотношения широко распространены среди почвенных микроорганизмов и лежат в основе круговорота веществ в природе.

Антагонизм - форма взаимоотношений, при которой один микроорганизм угнетает развитие другого или может вызвать его полную гибель. Антагонистические взаимоотношения выработались у микроорганизмов в борьбе за существование. Повсюду, где они обитают, между ними идет непрерывная борьба за источники питания, кислород воздуха, среду обитания. Так, большинство патогенных бактерий, попав с выделениями больных во внешнюю среду (почву, воду), не выдерживают здесь длительной конкуренции с многочисленными сапрофитами и сравнительно быстро погибают.

Антагонизм может быть обусловлен прямым воздействием микроорганизмов друг на друга или действием продуктов их обмена. Например, простейшие пожирают бактерий, а фаги лизируют их. Кишечник новорожденных заселяют молочно-кислые бактерии Bifidobacterium bifidum. Выделяя молочную кислоту, они подавляют рост гнилостных бактерий и этим защищают от кишечных Расстройств еще малоустойчивый организм грудных детей. Некоторые микроорганизмы в процессе жизнедеятельности вырабатывают различные вещества, оказывающие губительное действие на бактерии и другие микробы. К таким веществам относят антибиотики (см. "Антибиотики").

Контрольные вопросы

1. Какие физические факторы оказывают влияние на жизнедеятельность микроорганизмов?

2. Какие вещества относит к дезинфицирующим и как они различаются по механизму воздействия на микроорганизмы?

3. Перечислите, какие взаимоотношения существуют между микроорганизмами?

Стерилизация

Стерилизация - это обеспложивание, т. е. полное освобождение объектов окружающей среды от микроорганизмов и их спор.

Стерилизацию производят различными способами:

1) физическими (воздействие высокой температуры, УФ-лучей, использование бактериальных фильтров);

2) химическими (использование различных дезинфектантов, антисептиков);

3) биологическим (применение антибиотиков).

В лабораторной практике обычно применяют физические способы стерилизации.

Возможность и целесообразность использования того или иного способа стерилизации обусловлена особенностями материала, подлежащего стерилизации, его физическими и химическими свойствами.

Физические способы

Прокаливание в пламени горелки или фламбирование - способ стерилизации, при котором происходит полное обеспложивание объекта, так как погибают и вегетативные клетки, и споры микроорганизмов. Обычно прокаливают бактериологические петли, шпатели, пипетки, предметные и покровные стекла, мелкие инструменты. Не следует стерилизовать прокаливанием ножницы, скальпели, так как под действием огня режущая поверхность становится тупой.

Сухожаровая стерилизация

Стерилизацию сухим жаром или горячим воздухом осуществляют в печах Пастера (сушильных сухожаровых шкафах). Печь Пастера - шкаф с двойными стенками, изготовленный из термостойких материалов - металла и асбеста. Нагревают шкаф с помощью газовых горелок или электронагревательных приборов. Шкафы с электрическим нагревом снабжены регуляторами, обеспечивающими необходимую температуру. Для контроля температуры имеется термометр, вставленный в отверстие верхней стенки шкафа.

Сухим жаром стерилизуют в основном лабораторную Посуду. Подготовленную для стерилизации посуду неплотно загружают в печь, чтобы обеспечить равномерный и надежный прогрев стерилизуемого материала. Дверь шкафа плотно закрывают, включают обогревательный прибор, доводят температуру до 160-165° С и при этой температуре стерилизуют 1 ч. По окончании стерилизации выключают обогрев, но дверцу шкафа не открывают до тех пор, пока печь не остынет; в противном случае холодный воздух, поступающий внутрь шкафа, может вызвать образование трещин на горячей посуде.

Стерилизацию в печи Пастера можно проводить при различном температурном режиме и экспозиции (время стерилизации) (табл. 1).

Жидкости (питательные среды, изотонический раствор хлорида натрия и др.), предметы из резины и синтетических материалов стерилизовать сухим жаром нельзя, так как жидкости вскипают и выливаются, а резина и синтетические материалы плавятся.

Для контроля стерилизации в печи Пастера шелковые нити смачивают в культуре спорообразующих бактерий, подсушивают, помещают в стерильную чашку Петри и ставят в печь Пастера. Стерилизацию проводят при температуре 165° С 1 ч (для контроля часть нитей оставляют при комнатной температуре). Затем простерилизованные и контрольные нити кладут на поверхность агара в чашку Петри или помещают в пробирки с бульоном и инкубируют в термостате при температуре 37° С в течение 2 сут. При правильной работе печи Пастера в пробирках или чашках с питательными средами, куда были помещены простерилизованные нити, роста не будет, так как споры бактерий погибнут, в то время как споры бактерий на нитях, не подвергавшихся стерилизации (контрольные), прорастут и на питательных средах будет отмечен рост.

Для определения температуры внутри печи Пастера можно использовать сахарозу или пищевой сахарный песок, карамелизующиеся при температуре 165-170° С.

Подготовка лабораторной посуды к стерилизации в печи Пастера . Лабораторную посуду (чашки Петри, пипетки градуированные и пастеровские, флаконы, колбы, пробирки) перед стерилизацией необходимо тщательно вымыть, высушить и завернуть в бумагу, иначе после стерилизации она может снова загрязниться бактериями воздуха.

Чашки Петри завертывают в бумагу по одной или несколько штук либо укладывают в специальные металлические пеналы.

В верхние концы пипеток вставляют ватные тампоны, предупреждающие попадание исследуемого материала в рот. Градуированные пипетки заворачивают в длинные полоски бумаги шириной 4-5 см. На бумаге отмечают объем завернутой пипетки. В пеналах градуированные пипетки стерилизуют без дополнительного завертывания в бумагу.

Примечание . Если градуировка на пипетках плохо заметна, ее восстанавливают перед стерилизацией. На пипетку наносят масляную краску и, не дав краске высохнуть, в нее втирают с помощью тряпочки порошок бария сульфата. После этого тряпкой снимают избыток краски, которая остается только в насечках градуировки. Обработанные таким образом пипетки следует сполоснуть.

Острые концы пастеровских пипеток запаивают в пламени горелки и заворачивают в бумагу по 3-5 штук. Заворачивать пастеровские пипетки нужно осторожно, чтобы не обломать запаянные концы капилляров.

Флаконы, колбы, пробирки закрывают ватно-марлевыми пробками. Пробка должна входить в горлышко сосуда на 2 / 3 своей длины, не слишком туго, но и не свободно. Поверх пробок на каждый сосуд (кроме пробирок) надевают бумажный колпачок. Пробирки связывают по 5-50 штук и обертывают поверх бумагой.

Примечание . При высоких температурах бумага, в которую завертывают чашки и пипетки, и вата желтеют и даже могут обугливаться, поэтому каждый новый сорт бумаги, получаемый лабораторией, следует испытывать при принятом температурном режиме.

Контрольные вопросы

1. Что понимают под термином стерилизация?

2. Какими способами проводят стерилизацию?

3. Что стерилизуют прокаливанием на огне?

4. Опишите устройство и режим работы печи Пастера.

5. Что стерилизуют в печи Пастера?

6. Как подготавливают стеклянную посуду к стерилизации?

7. Почему в печи Пастера нельзя стерилизовать питательные среды и предметы из резины?

Задание

Подготовьте к стерилизации чашки Петри, градуированные пипетки, пастеровские пипетки, пробирки, колбы и флаконы.

Стерилизация кипячением

Кипячение - способ стерилизации, гарантирующий обеспложивание при условии отсутствия в стерилизуемом материале спор. Применяют для обработки шприцев инструментов, стеклянной и металлической посуды резиновых трубок и т. п.

Стерилизацию кипячением обычно проводят в стерилизаторе - металлической коробке прямоугольной формы с плотно закрывающейся крышкой. Стерилизуемый материал помещают на имеющуюся в стерилизаторе сетку и заливают водой. Для повышения точки кипения и устранения жесткости воды добавляют 1-2% гидрокарбонат натрия (лучше пользоваться дистиллированной водой). Стерилизатор закрывают крышкой и подогревают Началом стерилизации считают момент закипания воды, время кипячения 15-30 мин. По окончании стерилизации сетку с инструментами извлекают за боковые ручки специальными крючками, а находящиеся в ней инструменты берут стерильным пинцетом или корнцангом, который кипятят вместе с остальными инструментами.

Стерилизацию паром производят двумя способами: 1) паром под давлением; 2) текучим паром.

Стерилизацию паром под давлением производят в автоклаве. Этот способ стерилизации основан на воздействии на стерилизуемые материалы насыщенного водяного пара при давлении выше атмосферного. В результате такой стерилизации при однократной обработке погибают как вегетативные, так и споровые формы микроорганизмов.

Автоклав (рис. 12) - массивный котел, снаружи покрытый металлическим кожухом, герметически закрыт крышкой, которая плотно привинчивается к котлу откидывающимися болтами. В наружный котел вставлен другой, меньшего диаметра, который называют стерилизационной камерой. В эту камеру помещают предметы, подлежащие стерилизации. Между обоими котлами имеется свободное пространство, называемое водопаровой камерой. В эту камеру через воронку, укрепленную снаружи, наливают воду до определенного уровня, отмеченного на специальной водомерной трубке. При кипячении воды в водопаровой камере образуется пар. Стерилизационная камера снабжена выпускным краном с предохранительным клапаном для выхода пара при повышении давления сверх необходимого. Для определения давления, создающегося в стерилизационной камере, служит манометр.


Рис. 12. Схема автоклава. М - манометр; ПК - предохранительный клапан; В - воронка для воды; К 2 - кран для выпуска воды; К 3 - кран для выпуска пара

Нормальное атмосферное давление (760 мм рт. ст.) принимают за нуль. Между показаниями манометра и температурой имеется определенная зависимость (табл. 2).

В настоящее время имеются автоклавы с автоматическим регулированием режима работы. Кроме обычного манометра, они снабжены электроконтактным манометром, который препятствует увеличению давления выше заданной величины и тем самым обеспечивает постоянство нужной температуры в автоклаве.

Паром под давлением стерилизуют различные питательные среды (кроме содержащих нативные белки), жидкости (изотонический раствор хлорида натрия, воду и т. д.); приборы, особенно имеющие резиновые части.

Температура и длительность автоклавирования питательных сред определяется их составом, указанным в рецепте приготовления питательной среды. Например, простые среды (мясопептонный агар, мясопептонный бульон) стерилизуют 20 мин при 120° С (1 атм). Однако при этой температуре нельзя стерилизовать среды, содержащие нативные белки, углеводы и другие легко изменяющиеся от нагревания вещества. Среды с углеводами стерилизуют дробно при 100° С или в автоклаве при 112° С (0,5 атм) 10-15 мин. Различные жидкости, приборы, имеющие резиновые шланги, пробки, бактериальные свечи и фильтры стерилизуют 20 мин при 120° С (1 атм).

Внимание! В автоклавах производят также обезвреживание инфицированного материала. Чашки и пробирки, содержащие культуры микроорганизмов, помещают в специальные металлические ведра или баки с отверстиями в крышке для проникновения пара и стерилизуют в автоклаве при 126° С (1,5 атм) в течение 1 ч. Таким же образом стерилизуют инструменты после работы с бактериями, образующими споры.

К работе с автоклавом допускаются только специально подготовленные лица, которые должны строго и точно выполнять правила, указанные в инструкции, прилагаемой к аппарату.

Техника автоклавирования . 1. Перед работой проверяют исправность всех частей и притертость кранов.

2. Через воронку, укрепленную снаружи котла, до верхней метки водомерного стекла заливают воду (дистиллированную или кипяченую, чтобы не образовалась накипь). Кран под воронкой закрывают.

3. В стерилизационную камеру на специальную сетку помещают стерилизуемый материал. Предметы следует загружать не слишком плотно, так как пар должен свободно проходить между ними, иначе они не нагреваются до нужной температуры и могут остаться нестерильными.

4. Резиновую прокладку на крышке натирают мелом для лучшей герметизации.

5. Крышку закрывают и болтами привинчивают к корпусу автоклава, причем болты закручивают попарно крест-накрест.

6. Открывают до отказа выпускной кран, соединяющий стерилизационную камеру с наружным воздухом, и начинают нагревать автоклав. Нагревание автоклава обычно производят с помощью газа или электричества.

При нагревании автоклава вода закипает, образующийся пар поднимается между стенками котлов и сквозь специальные отверстия, имеющиеся в стенке внутреннего котла (см. рис. 12), попадает в стерилизационную камеру и выходит через открытый выпускной кран. Сначала пар выходит вместе с воздухом, находившимся в автоклаве. Необходимо, чтобы весь воздух был вытеснен из автоклава, так как в противном случае показания манометра не будут соответствовать температуре в автоклаве.

Появление непрерывной сильной струи пара указывает на полное удаление воздуха из автоклава; после этого выпускной кран закрывают и давление, внутри автоклава начинает постепенно повышаться.

7. Началом стерилизации считают момент, когда показания манометра достигают заданной величины. Нагрев регулируют так, чтобы давление в автоклаве в течение определенного времени не изменялось.

8. По истечении времени стерилизации нагрев автоклава прекращают, пар выпускают через выпускной кран. Когда стрелка манометра опускается до нуля, открывают крышку. Чтобы избежать ожогов паром, оставшимся в автоклаве, крышку следует открывать на себя.

Уровень температуры в автоклаве, т. е. правильность показаний манометра, можно проверить. Для этого используют различные вещества, имеющие определенную точку плавления: антипирин (113° С), резорцин и серу (119° С), бензойную кислоту (120° С). Одно из этих веществ смешивают с ничтожно малым количеством красителя (фуксина или метиленового синего) и насыпают в стеклянную трубочку, которую запаивают и помещают в вертикальном положении между стерилизуемым материалом. Если температура достаточна, вещество расплавится и окрасится в цвет соответствующего красителя.

Для проверки эффективности стерилизации в автоклав помещают пробирку с заведомо споровой культурой. После автоклавирования пробирку переносят в термостат на 24-48 ч, отмечают отсутствие или наличие роста. Отсутствие роста свидетельствует о правильной работе прибора.

Стерилизацию текучим паром производят в аппарате Коха. Этот способ применяют в тех случаях, когда стерилизуемый объект изменяется при температуре выше 100° С. Текучим паром стерилизуют питательные среды, содержащие мочевину, углеводы, молоко, картофель, желатин и др.

Аппарат (кипятильник) Коха представляет собой металлический цилиндр, обшитый снаружи (для уменьшения теплоотдачи) войлоком или асбестом. Цилиндр закрывают конической крышкой с отверстием для выхода пара. Внутри цилиндра находится подставка, до уровня которой наливают воду. На подставку ставят ведро с отверстием, в которое помещают стерилизуемый материал. Нагревают аппарат Коха при помощи газа или электричества. Отсчет времени стерилизации ведут с момента энергичного выделения пара у краев крышки и из отверстия для выхода пара. Стерилизуют в течение 30-60 мин. По окончании стерилизации нагрев прекращают. Вынимают из аппарата ведро с материалом и оставляют при комнатной температуре до следующего дня. Прогревание проводят 3 дня подряд при температуре 100° С по 30-60 мин. Такой метод носит название дробной стерилизации. При первом прогревании гибнут вегетативные формы микробов, а споровые сохраняются. За сутки споры успевают прорасти и превратиться в вегетативные формы, которые погибают на второй день стерилизации. Так как возможно, что некоторая часть спор не успела прорасти, материал выдерживают еще 24 ч, а затем проводят третью стерилизацию. Стерилизация текучим паром в аппарате Коха не требует специального контроля, так как показателем правильной работы прибора служит стерильность приготовленных питательных сред. Стерилизовать текучим паром можно также в автоклаве при незавинченной крышке и открытом выпускном кране.

Контрольные вопросы

1. Какие питательные среды стерилизуют паром?

2. Что такое стерилизатор и как он устроен?

3. Почему при стерилизации кипячением следует применять дистиллированную воду?

4. Опишите устройство и режим работы автоклава.

5. Что стерилизуют в автоклаве?

6. Что служит контролем правильной стерилизации при автоклавировании?

7. Что такое стерилизация текучим паром?

8. Опишите устройство аппарата Коха.

9. С какой целью проводят дробную стерилизацию?

Задание

Заполните форму.


Дробную стерилизацию можно проводить также в свертывателе Коха.

Свертыватель Коха используют для свертывания сывороточных и яичных питательных сред, причем одновременно с уплотнением среды происходит ее стерилизация.

Свертыватель Коха представляет собой плоский металлический ящик с двойными стенками, покрытый снаружи теплоизоляционным материалом. В пространство между стенками через специальное отверстие, находящееся в верхней части наружной стенки, наливают воду. Отверстие закрывают пробкой, в которую вставлен термометр. Закрывают аппарат двумя крышками: стеклянной и металлической. Через стеклянную крышку можно наблюдать за процессом свертывания. Пробирки со средами укладывают на дно свертывателя в наклонном положении.

Нагревание свертывателя осуществляют с помощью газа или электричества. Среды стерилизуют однократно при температуре 90° С в течение 1 ч или дробно - 3 дня подряд при 80° С в течение 1 ч.

Тиндализацию * - дробную стерилизацию при низких температурах - применяют для веществ, которые легко разрушаются и денатурируются при температуре 60° С (например, белковые жидкости). Прогревание стерилизуемого материала производят на водяной бане или в специальных приборах с терморегуляторами при температуре 56-58° С в течение часа 5 дней подряд.

* (Способ стерилизации, назван по имени Тиндаля, предложившего его. )

Пастеризация - стерилизация при 65-70° С в течение 1 ч, предложена Пастером для уничтожения бесспоровых форм микробов. Пастеризуют молоко, вино, пиво, плодовые соки и другие продукты. Молоко пастеризуют с целью освобождения от молочно-кислых и патогенных бактерий (бруцеллы, микобактерии туберкулеза, шигеллы, сальмонеллы, стафилококки и др.). При пастеризации пива, плодовых соков, вина погибают микроорганизмы, вызывающие различные виды брожения. Пастеризованные продукты лучше сохранять на холоду.

Контрольные вопросы

1. Каково назначение и устройство свертывателя Коха?

2. Какие существуют способы стерилизации в свертывателе?

3. Что такое тиндализация?

4. Что такое пастеризация?

Стерилизация ультрафиолетовым облучением

Стерилизацию УФ-лучами производят при помощи специальных установок - бактерицидных ламп. УФ-лучи обладают высокой антимикробной активностью и могут вызвать гибель не только вегетативных клеток, но и спор. УФ-облучение применяют для стерилизации воздуха в больницах, операционных, детских учреждениях и т. д. В микробиологической лаборатории УФ-лучами обрабатывают бокс перед работой.

Контрольные вопросы

1. Какими свойствами обладают ультрафиолетовые лучи?

2. В каких случаях прибегают к стерилизации методом ультрафиолетового излучения?

Механическая стерилизация при помощи бактериальных фильтров

Стерилизацию фильтрованием применяют в тех случаях, когда стерилизуемые предметы изменяются при нагревании. Фильтрование проводят с помощью бактериальных фильтров, изготовленных из различных мелкопористых материалов. Поры фильтров должны быть достаточно мелкими (до 1 мкм), чтобы обеспечить механическую задержку бактерий, поэтому некоторые авторы относят фильтрование к механическим способам стерилизации.

Методом фильтрования стерилизуют питательные среды, содержащие белок, сыворотки, некоторые антибиотики, а также отделяют бактерии от вирусов, фагов и экзотоксинов.

В микробиологической практике используют асбестовые фильтры Зейтца, мембранные фильтры и фильтры (свечи) Шамберлана и Беркефельда.

Фильтры Зейтца представляют собой диски, изготовленные из смеси асбеста с целлюлозой. Толщина их 3-5 мм, диаметр 35-140 мм. Отечественная промышленность изготовляет фильтры двух марок: "Ф" (фильтрующие)- задерживающие взвешенные частицы, но пропускающие бактерии; "СФ" (стерилизующие) - с меньшими порами, задерживающие бактерии, но пропускающие вирусы. Мятые асбестовые пластинки, а также пластинки с надломами и трещинами для работы непригодны.

Мембранные фильтры готовят из нитроцеллюлозы. Они представляют собой диски белого цвета толщиной 0,1 мм и диаметром 35 мм. В зависимости от размера пор их обозначают № 1, 2, 3, 4 и 5 (табл. 3).

Для стерилизации наиболее пригоден фильтр № 1. Кроме перечисленных, выпускают еще так называемый предварительный фильтр, предназначенный для освобождения фильтруемой жидкости от содержащихся в ней крупных частиц.

Фильтры (свечи) Шамберлана и Беркефельда представляют собой полые цилиндры, закрытые с одного конца. Свечи Шамберлана изготовляют из каолина с примесью песка и кварца. Стандартизуют их по размерам пор и обозначают L 1 , L 2 , L 3 ... L 13 . Фильтры (свечи) Беркефельда готовят из инфузорной земли, по величине пор их обозначают V, N, W, что соответствует диаметру пор 3-4, 4-7, 8-12 мк.

Работу с бактериальными фильтрами осуществляют следующим образом. Фильтр должен быть закреплен в специальном держателе, который вставляют в приемник фильтра. Приемником обычно является колба Бунзена. Держатели, в большинстве случаев сделанные из нержавеющей стали, состоят из двух частей: верхней, имеющей форму цилиндра без дна, и нижней - опорной части, заканчивающейся трубкой. Фильтры Зейтца шероховатой поверхностью вверх помещают на металлическую сетку и крепко зажимают винтами между верхней и нижней частью держателя. Смонтированный фильтр укрепляют в резиновой пробке, вставленной в горлышко колбы Бунзена. В отводную трубку колбы, которую присоединяют к вакуумному насосу, вставляют ватный тампон. Подготовленную установку обертывают бумагой и стерилизуют в автоклаве под давлением 1 атм в течение 20-30 мин. Весь прибор в собранном виде называют также фильтром Зейтца (рис. 13).

Непосредственно перед фильтрованием отводной конец колбы Бунзена соединяют резиновой трубкой с масляным или водоструйным насосом. Места соединения различных частей заливают парафином для создания герметичности. В цилиндр аппарата наливают фильтруемую жидкость и включают в действие насос, создающий вакуум в приемнике. В результате образующейся разности давлений фильтруемая жидкость проходит через поры фильтра в приемник, а микробы остаются на поверхности фильтра.

Мембранные фильтры перед употреблением стерилизуют кипячением в дистиллированной воде. Чтобы предупредить скручивание фильтров, их сначала помещают в дистиллированную воду, подогретую до температуры 50-60° С, и кипятят на слабом огне 30 мин, 2-3 раза меняя воду. Держатель и приемник фильтра стерилизуют заранее, прибор монтируют в асептических условиях. Чтобы не порвать мембранный фильтр о металлическую сетку, под него кладут кружки стерильной фильтровальной бумаги. Затем стерильным пинцетом с гладкими кончиками берут мембранный фильтр из стерилизатора и помещают на опорную сетку блестящей поверхностью вниз.

Простерилизованные в автоклаве свечи (Шамберлана) соединяют посредством резиновой трубки с приёмником и опускают в сосуд (чаще цилиндр) с фильтруемой жидкостью. Фильтрация происходит при помощи вакуумного насоса. В приемник поступает стерильный фильтрат, а бактерии задерживаются порами свечи.

Мембранные и асбестовые фильтры рассчитаны на одноразовое использование. Свечи после употребления кипятят в водопроводной воде, затем прокаливают в муфельной печи.

Перед последующим употреблением свечи проверяют на целостность. Свечу опускают в сосуд с водой и пропускают воздух. Если на поверхности свечи выступают пузырьки воздуха, значит в свече образовались трещины и она непригодна.

Контрольные вопросы

1. В чем заключается метод стерилизации фильтрованием? Что стерилизуют этим методом?

2. Какие бактериальные фильтры Вы знаете? Как монтируют прибор для фильтрования, какие условия необходимо соблюдать?

Химические способы

Этот вид стерилизации применяют ограниченно, и он служит в основном для предупреждения бактериального загрязнения питательных сред и иммунобиологических препаратов (вакцин и сывороток).

К питательным средам чаще всего прибавляют такие вещества, как хлороформ, толуол, эфир. При необходимости освободить среду от этих консервантов ее нагревают на водяной бане при 56° С (консерванты испаряются).

Для консервирования вакцин, сывороток пользуются мертиолатом, борной кислотой, формалином и т. д.

Биологическая стерилизация

Биологическая стерилизация основана на применении антибиотиков. Этот метод используют при культивировании вирусов.

Контрольные вопросы

1. Что такое химическая стерилизация и когда ее используют?

2. Что такое биологическая стерилизация?

Основные способы стерилизации представлены в табл. 4.

1 (Стерилизация неполная: в стерилизуемом материале сохраняются споры. )

2 (Стерилизация неполная: в стерилизуемом материале сохраняются вирусы. )

Дезинфекция

В микробиологической практике применяют различные дезинфицирующие вещества: 3-5% растворы фенола, 5-10% растворы лизола, 1-5% растворы хлорамина, 3-6% растворы перекиси водорода, 1-5% растворы формалина, растворы сулемы в разведении 1:1000 (0,1%), 70° спирт и др.

Дезинфекции подвергают отработанный патологический материал (гной, кал, моча, мокрота, кровь, спинномозговая жидкость) перед сливом его в канализацию. Обеззараживание проводят сухой хлорной известью или 3-5% раствором хлорамина.

Загрязненные патологическим материалом или культурами микроорганизмов пипетки (градуированные и пастеровские), стеклянные шпатели, предметные и покровные стекла опускают на сутки в стеклянные банки с 3% раствором фенола или перекиси водорода.

По окончании работы с заразным материалом лаборант должен обработать дезинфицирующим раствором рабочее место и руки. Поверхность рабочего стола протирают кусочком ваты, смоченным 3% раствором фенола. Руки дезинфицируют 1% раствором хлорамина. Для этого ватный шарик или марлевую салфетку смачивают дезинфицирующим раствором и протирают левую кисть, потом правую, а затем моют руки теплой водой с мылом.

Выбор дезинфицирующего вещества, его концентрация и длительность воздействия (экспозиция) зависят от биологических свойств микроба и от той среды, в которой будет происходить контакт дезинфицирующего вещества с патогенными микроорганизмами. Например, сулема, фенол, спирты непригодны для обеззараживания белковых субстратов (гной, кровь, мокрота), так как под их влиянием происходит свертывание белков, а свернувшийся белок предохраняет микроорганизмы от воздействия дезинфицирующих веществ.

При дезинфекции материала, инфицированного споровыми формами микроорганизмов, применяют 5% раствор хлорамина, 1-2,5% растворы активированного хлорамина, 5-10% растворы формалина и другие вещества.

Дезинфекцию, которую проводят на протяжении всего дня по ходу работы, называют текущей, а по окончании работы - заключительной.

Дезинфицирующие вещества и прописи приготовления из них рабочих растворов . Хлорная известь - белый комковатый порошок с резким запахом хлора, в воде растворяется не полностью. Бактерицидный эффект зависит от содержания активного хлора, количество которого колеблется от 28 до 36%. Хлорная известь, содержащая менее 25% активного хлора, для дезинфекции непригодна.

При неправильном хранении хлорная известь разлагается и теряет часть активного хлора. Разложению способствуют тепло, влага, солнечный свет, поэтому хранить хлорную известь следует в сухом, темном месте, в плотно закрытой таре.

Сухую хлорную известь применяют для обеззараживания выделений человека и животных (из расчета 200 г на 1 л испражнений и 10 г на 1 л мочи).

Приготовление исходного 10% осветленного раствора хлорной извести. Берут 1 кг сухой хлорной извести, помещают в эмалированное ведро и измельчают. Затем заливают холодной водой до объема 10 л, хорошо перемешивают, закрывают крышкой и оставляют на сутки в прохладном месте. После этого образовавшийся 10% осветленный раствор осторожно сливают и отфильтровывают через несколько слоев марли или процеживают через плотную ткань. Хранят в бутылях из темного стекла, закрытых деревянной пробкой, в прохладном месте, не более 10 сут. Рабочие растворы необходимой концентрации готовят из основного раствора непосредственного перед их употреблением. Количество основного раствора, необходимое для приготовления 0,2-10% осветленных растворов хлорной извести, приведено в табл. 5.

Концентрацию осветленных растворов хлорной извести от 0,2 до 10% выбирают в зависимости от характера обеззараживаемого объекта и устойчивости возбудителя.

Хлорамин - кристаллическое вещество белого или желтоватого цвета, содержит 24-28% активного хлора. Хорошо растворяется в воде при комнатной температуре, поэтому растворы его готовят непосредственно перед дезинфекцией. Пользуются 0,2-10% растворами хлорамина. Соотношение между процентной концентрацией раствора и количеством хлорамина в граммах на 1 и 10 л приведено в табл. 6.

Растворяют хлорамин в стеклянной или эмалированной посуде. При хранении растворов хлорамина в посуде из темного стекла с притертой пробкой их активность сохраняется до 15 сут.

Активированный хлорамин. Дезинфицирующие свойства хлорамина усиливаются при добавлении к нему активатора в соотношении 1:1 или 1:2. В качестве активатора используют аммонийные соединения - хлорид, сульфат, нитрат аммония. Применяется активированный хлорамин в концентрации 0,5, 1 и 2,5%. Готовят их непосредственно перед употреблением. Раздельно отвешивают хлорамин и соль аммония. Сначала растворяют в воде хлорамин, а затем прибавляют активатор.

Преимущество активированных растворов хлорамина перед обычными заключается в том, что при добавлении активатора ускоряется выделение активного хлора. Поэтому препарат губительно действует не только на вегетативные формы микроорганизмов, но и на их споры. Активированный хлорамин применяют в более низких концентрациях и при меньшей экспозиции.

Фенол (карболовая кислота) представляет собой бесцветные кристаллы игольчатой формы с резким характерным запахом. Под действием света, воздуха и влаги кристаллы приобретают малиново-красный цвет. Хранят в закрытых банках из темного стекла и в защищенном от света месте.

Фенол растворим в воде, спирте, эфире, жирных маслах. Обладая большой гигроскопичностью, поглощает из окружающей среды влагу и становится жидким. Жидкая карболовая кислота содержит 90% кристаллического фенола и 10% воды.

Применяют 3-5% водные растворы карболовой кислоты, приготовленные из кристаллического фенола и жидкой карболовой кислоты по схеме, приведенной в табл. 7. Активность фенола повышается при растворении его в горячей воде (40-50° С).

Внимание! Кристаллический фенол или жидкая карболовая кислота, попадая на кожу, могут вызвать ее раздражение, а в больших концентрациях - тяжелые ожоги. Поэтому обращаться с карболовой кислотой нужно с большой осторожностью. При изготовлении растворов следует надевать резиновые перчатки или в крайнем случае смазать руки вазелином.

В случае попадания карболовой кислоты на кожу необходимо немедленно смыть ее теплой водой с мылом или 40° этиловым спиртом.

Примечание. Для приготовления дезинфицирующих растворов фенола удобнее и безопаснее использовать жидкую карболовую кислоту.

Контрольные вопросы

1. Какие дезинфицирующие вещества применяют в микробиологической практике?

2. Опишите внешний вид и основные свойства хлорной извести, хлорамина, фенола.

3. Какие растворы дезинфицирующих веществ используют для обеззараживания материала, инфицированного споровыми формами микроорганизмов?

Задание

Приготовьте 2 л 5% рабочего раствора осветленной хлорной извести; 500 мл 3% раствора хлорамина, 300 мл 1% раствора активированного хлорамина.

Внимание! Прежде чем приступить к приготовлению растворов, сделайте расчеты.

Жизнедеятельность микроорганизмов зависит от условий существования. Благоприятными условиями их существования является влажность, тепло, наличие питательных веществ. Тормозят развитие микроорганизмов высушивание, кислая среда, низкие температуры, отсутствие питательных веществ и др. Искусственно регулируя условия существования микробов, можно прекратить их размножение или уничтожить их.

Большинство пищевых продуктов по химическому составу является благоприятной средой для существования микробов. Поэтому хранить пищевые продукты можно только при неблагоприятных условиях для микроорганизмов. Говоря о влиянии физических факторов окружающей среды на микроорганизмы, подразумевают условия внешней среды, влияющие на их развитие и делят таковые на три основные группы: физические, химические и биологические. К физическим условиям (факторам) относятся: температура, влажность среды, концентрация веществ, растворенных в среде; излучение.

Влияние температуры на микроорганизмы.

Развитие всех микроорганизмов возможно при определенной температуре. Известны микроорганизмы, способные существовать при низких (-8°С и ниже) и при повышенных температурных условиях, например, обитатели горячих источников поддерживают жизнедеятельность при температуре 80-95°С. Большинство микробов предпочитает температурные пределы 15-35°С. Различают:

  • оптимальную, наиболее благоприятную для развития температуру;
  • максимальную, при которой прекращается развитие микробов данного вида;
  • минимальную, ниже которой микробы прекращают развитие.

По отношению к уровню температуры микроорганизмы разделяют на три группы:

  • психрофиты – хорошо растут при пониженных температурах,
  • мезофиллы – нормально существуют при средних температурах,
  • термофилы – существуют при постоянно высоких температурах.

Микробы сравнительно быстро приспосабливаются к значительным изменениям температуры. Поэтому незначительное снижение или повышение уровня температуры не гарантирует прекращения развития микроорганизмов.

Влияние высоких температур.

Температуры, значительно превышающие максимальные, вызывают гибель микроорганизмов. В воде большинство вегетативных форм бактерий при нагревании до 60°С погибают за час; до 70°С — за 10-15 минут, до 100°С — за несколько секунд. В воздухе гибель микроорганизмов наступает при значительно более высокой температуре — до 170°С и выше в течение 1-2 часов. Споровые формы бактерий значительно устойчивее к нагреванию, они могут выдерживать кипячение в течение 4-5 часов.

Методы пастеризации и стерилизации основаны на свойстве микробов погибать под действием высоких температур. Пастеризация — осуществляется при температуре 60-90°С, при этом погибают вегетативные формы клеток, а споровые остаются жизнеспособными. Поэтому пастеризованные продукты следует быстро охлаждать и хранить в условиях охлаждения. Стерилизация — это полное уничтожение всех форм микроорганизмов, включая споровые. Стерилизацию осуществляют при температуре 110-120°С и повышенном давлении.

Однако споры не погибают мгновенно. Даже при 120°С гибель их наступает через 20-30 минут. Стерилизуют пищевые консервы, некоторые медицинские материалы, субстраты, на которых выращивают микроорганизмы в лабораториях. Эффект стерилизации зависит от количественного и качественного состава микрофлоры объекта стерилизации, его химического состава, консистенции, объема, массы и др.

Влияние низких температур.

Чаще всего действие низких температур связано не с гибелью микроорганизмов, а с торможением и прекращением их развития. Низкую температуру микроорганизмы переносят значительно лучше. Многие болезнетворные микробы, попадающие в окружающую среду, способны переносить суровые зимы, не теряя болезнетворности. Наиболее негативно на развитие микроорганизмов влияет температура, при которой замерзает содержимое клетки.

Тормозящее действие низких температур на микробы используют для хранения различных продуктов в охлажденном виде при температуре 0-4°С, и замороженном – при температуре — 6-20°С и ниже. Действие низких температур в замороженных продуктах усиливает влияние повышенного осмотического давления. Поскольку большая часть воды перешла в лед, в оставшейся жидкой части воды оказались все растворенные вещества, содержавшиеся в массе продукта. Это вызывает повышенное осмотическое давление, которое, в свою очередь, тормозит развитие микробов.

Замораживание используют для хранения мяса, рыбы, плодов, овощей полуфабрикатов, кулинарных изделий, готовых блюд и др. Прекращение развития микробов действует только до тех пор, пока продолжается действие низкой температуры. При повышении температуры начинается бурное развитие и размножение микробов, что вызывает порчу пищевых продуктов.

Следовательно, низкая температура только замедляет биохимические процессы, не имея стерилизующего эффекта. Многократное замораживание одних и тех же продуктов способствует быстрому приспособлению микробов к низким температурам и усиливает их жизнеспособность. Поэтому надо предотвращать колебания температуры во время хранения продуктов.

    К числу основных физических факторов, воздействующих на

микроорганизмы как в естественной среде обитания, так и в условиях лаборатории, относятся температура, высушивание, гидростатическое давление, лучистая энергия и другие.

Влияние температуры. Температура – один из наиболее важных факторов в жизни микробов. Она может быть оптимальной, т.е. наиболее благоприятной для развития, а также максимальной, когда подавляются жизненные процессы; минимальной, ведущей к замедлению или прекращению роста. Микроорганизмы по их адаптации к определенным температурным условиям объединяют в три физиологические группы:

    психрофилы

    мезофилы

    термофилы

Психрофильные микроорганизмы – обитатели холодных источников,

глубоких морей и океанов с оптимальной температурой 15-20 0 С, рост возможен от 0 0 С до 35 0 С. К ним относят светящиеся бактерии, железобактерии и другие.

Мезофильные бактерии живут при средних температурах с оптимумом 30-37 0 С, минимум 3 0 С и максимум до 45 0 С. Сюда относятся большинство сапрофитов и все патогенные микроорганизмы.

Термофильные бактерии требуют для своего развития более высокую температуру – от 35 до 80 0 С, при оптимуме – 50-60 0 С. Они встречаются в горячих источниках, пищеварительном тракте животных, в почвах районов с жарким климатом.

Высокие и низкие температуры по-разному влияют на микробы. Низкие температуры обычно не вызывают гибели микробов, а лишь задерживают их рост и размножение. Жизнедеятельность многих микробов сохраняется при температуре, близкой к абсолютному нулю. Так, эшерихии остаются жизнеспособными при – 190 0 С до 4-х месяцев, а бруцеллы при –40 0 С сохраняются более 6 месяцев. Однако, следует иметь в виду, что когда замораживание происходит без образования кристаллов (-190), то такая температура менее губительна, чем температура (-20), при которой образуются кристаллы льда, ведущие к механическим повреждениям и необратимым процессам в микробной клетке.

Низкие температуры приостанавливают гнилостные и бродильные процессы.

Высокая температура, в особенности нагревание паром под давлением, губительно действует на микробов. Чем больше температура выходит за пределы максимума, тем быстрее погибают вегетативные формы микроорганизмов: при 60 0 С – через 30 мин., при 80-100 0 С – через 1 мин. Споры бактерий более устойчивы к действию высокой температуры.

В основе бактерицидного действия высоких температур лежит угнетение ферментов, денатурация белков, нарушение осмотического барьера. Воздействие высокой температуры лежит в основе многих методов термической стерилизации, которая осуществляется главным образом в автоклаве (при 120 0 С, с давлением 1 атм, 30 минут), либо путем кипячения, дробной стерилизации текучим паром (при 100 0 С, три дня подряд по 30 минут), воздействия сухим жаром (при 170 0 С 1,5 часа) – более подробно на ЛПЗ. Под термином стерилизация понимают мероприятие, направленное на полное уничтожение в стерилизуемом материале (трупы животных, лабораторная посуда, питательные среды, использованные микробные культуры) всех микробов.

Влияние высушивания. Высушивание, приводящее к обезвоживанию, действует губительно на микроорганизмы. В бактериальной клетке вследствие обезвоживания жизненные процессы замедляются, процесс размножения приостанавливается, клетка переходит в анабиотическое состояние. Дегидратация вегетативных бактериальных клеток в большинстве случаев вызывает их гибель (особенно патогенных). Споровые формы микробов в высушенном состоянии могут сохраняться многие годы. В лабораторной практике для сохранения микробных культур широко применяют метод сублимации – обезвоживания при низкой температуре. Этим методом высушивают вакцины, музейные баккультуры, лечебные и диагностические сыворотки и другие биопрепараты.

Влияние гидростатического и осмотического давления. Гидростатическое давление, превышающее 108-110 Мпа, вызывает денатурацию белков, инактивацию ферментов, повышает электролитическую диссоциацию, увеличивает вязкость многих жидкостей, что неблагоприятно сказывается на жизнедеятельность микробов и нередко приводит к их гибели. Большинство микробов выдерживают давление около 65 Мпа в течение часа. Встречаются баротолерантные (113-116 Мпа) микроорганизмы, обитающие в глубинах океана, нефтяных скважинах. Повышенное давление (10 3 – 10 6 Па) в сочетании с высокой температурой (120 0 С) используется в автоклавах в целях обезвреживания (стерилизации) материалов.

Большое влияние на рост микроорганизмов оказывает осмотическое давление среды, определяемое концентрацией растворенных в ней веществ. Внутри бактерий осмотическое давление соответствует давлению 10-20% раствора сахарозы. Если поместить микробную клетку в среду с более высоким осмотическим давлением, то наступит плазмолиз (потеря воды и гибель клетки), если в среду с низким осмотическим давлением, то вода будет поступать внутрь клетки, клеточная стенка может разорваться – плазмоптиз. Эти явления используют в промышленности и в быту для консервирования продуктов (огурцы, помидоры, капуста и др.).

Однако, существуют микроорганизмы любящие расти при высоких концентрациях солей – галофилы. Напр., роды Micrococcus , Sarcina размножаются при высокой 20-30% концентрации NaCL . Это свойство используется в лабораторной практике для дифференциации этих микроорганизмов от других, подобных.

Действие различных видов излучения на микроорганизмы. Различные виды излучений бактерицидно действуют на микробы. Однако степень этого действия зависит от вида лучевой энергии, ее дозы и длительности экспозиции.

Солнечные лучи – сильно действующий на микробы физический фактор. Многие патогенные микроорганизмы погибают при воздействии солнечных лучей в течение 10-30 минут, некоторые через 2 часа (туберкулезная палочка), споры бацилл – через несколько часов. Рассеянный свет действует слабее. На практике культивирование микроорганизмов проводят в темноте, в термостатах. Видимый свет положительно влияет только на пигментообразующие бактерии. Бактерицидное действие света связано с образованием в клетке гидроксильных радикалов и других высокоактивных веществ.

Ультрафиолетовые лучи (100-380 нм) широко применяются для санации воздуха в животноводческих помещениях, в лабораториях и промышленных цехах, боксах для обеспечения асептических условий посевов. Используют при этом ртутнокварцевые (ПРК) или бактерицидные (БУВ) лампы. Механизм действия УФЛ заключается в подавлении репликации ДНК.

Несколько слабее действуют на микробов радиоактивные гамма-лучи и рентгеновские лучи, из-за того, что стерилизуемые объекты надо располагать в непосредственной близости от источника излучения. Их применяют для уничтожения микробов на инструментах, в перевязочном материале, биопрепаратах.

Из-за нехватки времени действие на микроорганизмы ультразвука, электричества и других физических факторов прочитаете самостоятельно.

2. Микробы, как и все живое, высокочувствительны к факторам среды. При возникновении благоприятных импульсов микробы устремляются к объекту раздражения, неблагоприятные – отталкивают их. Такое явление получило название хемотаксиса. Вещества, благоприятно действующие на микробную клетку (мясной экстракт, пептон) вызывают положительный хемотаксис; сильнодействующие, ядовитые вещества (кислоты, щелочи и др.) ведущие к перевозбуждению или угнетению, приводят к отрицательному хемотаксису. Ядовитые вещества, попадая в бактериальную клетку, взаимодействуют с ее жизненно важными компонентами и нарушают их функции. Это вызывает остановку роста микроорганизма (бактериостатическое действие) или его гибель (бактерицидное действие). Бактерицидным действием обладают химические вещества различных групп: кислоты (Н 2 SO 4 , НС L , HNO 3 ), спирты (метиловый, этиловый и др.), поверхностно-активные вещества (жирные кислоты, порошок, мыло), фенолы и их производные, соли тяжелых металлов (свинец, медь, цинк, ртуть), окислители (хлор, йод, K М nO 4 , Н 2 О 2 ), группа формальдегида, красители (бр.зеленый, риванол и др.). Механизм антимикробного действия этих веществ различен. Одни из них (формальдегид, кислоты, щелочи и др.) вызывают свертывание белка, другие изменяют реакцию окружающей среды, третьи – повреждают клеточную стенку.

Действие химических веществ на микробы усиливается при повышении температуры раствора до 60-70 0 , увеличении концентрации химического вещества, срока действия. Имеет значение и характер материала, к которым требуется уничтожить микробов – в навозе, трупах животных, гное микробы менее доступны, и для обеззараживания их необходимо длительное воздействие высококонцентрированными растворами химических веществ.

Для уничтожения вегетативных форм бактерий наиболее часто применяют 5% раствор фенола, лизола или хлорамина, 10-20% раствор негашеной извести, 2% раствор формальдегида, 4% горячий раствор едкого натра, вызывающие их гибель в среднем через 1-2 часа. Споры бацилл погибают при воздействии 3% раствора формальдегида, 20% раствора хлорной извести, 5% раствора фенола в течении 10-24 часов.

В некоторых случаях химические средства применяют в виде аэрозоля; используют и газообразные вещества.

Антимикробное действие химических веществ лежит в основе дезинфекции – мероприятия, направленного на уничтожение патогенных микробов определенного вида. В отличие от стерилизации при дезинфекции не происходит уничтожения всех видов – многие сапрофиты не чувствительны к тому или иному дезинфектанту и сохраняют жизнеспособность.

3. Действие биологических факторов проявляется прежде всего в антагонизме микробов, когда продукты жизнедеятельности одних микробов обусловливают гибель других. С проблемой микробного антагонизма непрерывно связано современное учение об антибиотиках.

Антибиотики (греч. anti – против, bios – жизнь) – вещества микробного, животного и растительного происхождения, подавляющие развитие и биохимическую активность чувствительных к ним микробов. По происхождению антибиотики разделяют на следующие группы :

    Антибиотики, выделенные из грибов.

Наиболее активными продуцентами антибиотиков являются плесневые

грибы и актиномицеты. Плесень пенициллиум образует широко используемый антибиотик пенициллин, а аспергиллус и мукор – фумагацин, аспергиллин, клавицин. Большинство антибиотиков выделено из актиномицетов: стрептомицин, тетрациклин, биомицин, неомицин, нистатин и другие.

    Антибиотики, выделенные из бактерий.

Продуцентами являются разнообразные бактерии. В основном это

сапрофиты с интенсивно выраженной биохимической активностью, обитающие в почве. К ним относятся грамицидин, колицин, пиоцианин, субтилин, полимиксины, бацитрацин, лизоцим и другие бактериальные ферменты.

    Антибиотики животного происхождения.

В биологическом отношении к антибиотикам близки некоторые

вещества выделяемые животными тканями, способные избирательно поражать отдельные виды микробов. Это эритрин, выделяемый из эритроцитов животных; экмолин, полученный из тканей рыб.

    Антибиотики растительного происхождения.

Ядовитые летучие вещества, выделяемые растениями (лук, чеснок,

хрен, горчица, алоэ, крапива, можжевельник и др.) наз. фитонцидами. Открыты в 1928 году Б.Н.Токиным. Часть фитонцидов выделены в чистом виде: алицин – из чеснока, рафинин – из семян редиски и др.

Антибиотики могут оказывать на микроорганизмы бактерицидное (убивающее) или бактериостатическое (задерживающее рост) действие. Данное свойство зависит от вида антибиотика, его концентрации, чувствительности микроорганизма к нему и других факторов. Каждый антибиотик обладает определенным антимикробным спектром действия: существуют антибиотики, действующие на немногие виды микроорганизмов (пенициллин, грамицидин), и антибиотики, имеющие широкий спектр антимикробного действия (левомицетин, тетрациклин и др.). В основе механизма действия антибиотиков на микроорганизмы лежит нарушение синтеза клеточной стенки и ее мембран или же нарушение синтеза ДНК. РНК и белка. Напр., пенициллин нарушает образование бактериальной стенки, левомицетин отрицательно влияет на РНК и синтез белка.

В связи с широким и длительным использованием антибиотиков в качестве лекарственных препаратов в природе возникли и очень распространились антибиотикоустойчивые формы микробов, в частности L -формы, являющиеся возбудителями различных инфекционных болезней. Механизм образования устойчивых форм микробов довольно сложный: выработка адаптивных ферментов (напр. пенициллиназа), синтез естественных метаболитов, ингибирующих действие антиметаболитов химиопрепаратов (напр.стафилококки вырабатывают парааминобензойную кислоту, и становятся нечувствительны к этому препарату. А также в результате мутаций, конъюгации, трансформации, трансдукции.

Предварительное определение чувствительности микроорганизмов позволяет выбрать наиболее активный антибиотик и затем использовать его как лечебный препарат. Определение чувствительности микробов к антибиотикам проводят методом диффузии в агар или методом серийных разведений – подробнее на ЛПЗ.

Бактериофаги. Противомикробное действие оказывают посредством лизиса микробной клетки: вначале инфицирует, затем репродуцируется, образуя многочисленное потомство, и лизирует клетку, сопровождающимся выходом фаговых частиц в среду обитания бактерий.

Бактериофаги широко распространены в почве, воде, экскрементах больных и здоровых животных, человека и обнаружены у большинства видов бактерий. Открыты они Д.Эррелем в 1917 году.

Фаг обладает хорошо выраженными антигенными свойствами. При парентеральном введении фага в организме образуются антитела, нейтрализующие литическую активность фага и обладающие высокой специфичностью. По антигенным свойствам фаги делят на серологические варианты.

По стапени специфичности фаги могут быть разделены на три группы: полифаги лизируют родственных бактерий, монофаги – бактерий одного вида, а фаговары – только определенные варианты данного вида бактерий.

Большинство фагов инактивируется при температуре 65-70 0 С.Более низкая температура снижает активность фага. Относительно легко фаги переносят замораживание при –185 0 С, а также хорошо выдерживают высушивание. К дезинфицирующим веществам фаг более устойчив, чем бактерии.

Фаг действует только на живые клетки бактерий в процессе их активного роста. В зависимости от характера проявляемого действия различают вирулентные и умеренные фаги. Вирулентные фаги при проникновении в клетку бактерий размножаются в ней и вызывают лизис; умеренные фаги не вызывают лизиса, а остаются а состоянии лизогении.

Размеры бактериофагов, как и вирусов, невелики – 8-100 нм. Форма их напоминает сперматозоид – от округлой или многогранной головки отходит хвостовой отросток различной длины. Однако иногда встречаются фаги, лишенные отростка. Бактериофаг – неклеточное образование. У него нет оболочки, ядра, цитоплазмы, т.е. элементов присущих клетке. Он состоит из молекулы нуклеиновой кислоты (чаще ДНК, реже РНК) и окружающего ее белкового чехла. Нуклеиновая кислота (40-50%) находится внутри головки, белковый чехол (50-60%) покрывает как головку, так и хвостовой отросток, на конце которого имеются специальные волоконца, облегчающие прикрепление фага к оболочке микробов. Липиды и ферменты в фаговой частице находятся в минимальных количествах – около 2%.

Бактериофаги используются для фагодиагностики, фаготипирования бактерий, для профилактики и лечения инфекционных болезней. Более подробно – на ЛПЗ.

Федеральное государственное образовательное учреждение высшего профессионального образования

«Московская государственная академия ветеринарной медицины и биотехнологии имени »

_____________________________________________________

Влияние физических, химических и биологических факторов

на микроорганизмы

Москва – 2011

Грязнева физических, химических и био­логических факторов на микроорганизмы /Лекция.- М.: ФГОУ ВПО МГАВМиБ.- 20с.

Предназначена для студентов высших учебных заве­де­ний по специальностям 111801 - «Ветеринария», 020207 - «Биофизика», 020208 - «Биохимия», 110501 – «Ветсан­экс­пертиза», 080– «Товароведение и экспер­тиза товаров», 111100 – «Зоотехния».

Рецензенты:

доктор ветеринарных наук, профессор

Утверждены учебно-методической и клинической ко­мис­сией факуль­тета ве­теринарной медицины ФГОУ ВПО МГАВМиБ (протокол от 21 марта 2011 г.).

Влияние физических, химических и биологических факторов на микроорганизмы

Введение.

1. Физические факторы, влияющие на микроорганизмы.

2. Химические факторы.

3. Биологические факторы.

4. Стерилизация.

5. Приспособляемость микроорганизмов к неблагоприятным факторам окружающей среды.

Заключение.

Вопросы для самоконтроля

Литература

1. , Бурла-кова Г. И., Шайкова подготовка студентов по дисциплине «Микробиология» с тестовыми заданиями: Учебное пособие.– М.: ФГОУ ВПО МГАВМиБ, 2008.

2. , Родионова //Методи-ческие рекомендации по изучению дисциплины и выполнению самостоятельной работы для студентов факультета ветеринар-ной медицины очного, заочного и очно-заочного обучения.- М.: ФГОУ ВПО МГАВМиБ.- 2008.

3. , Госманов микробио­логия и иммунология : Учебник.- М.: КолосС.- 2006.

4. , Скородумов ­тикум по ветеринарной микробиологии.- М.: КолосС.- 2008.

5. Поздеев микробиология: Учебник для ву­зов.- М.: Геотар-Мед.- 2001.

6. , Банникова морфо­логии популяций патогенных бактерий.- М.: Колос. 2007.

Введение


Жизнь микроорганизмов находится в тесной зависимости от условий окружающей среды, поэтому микроорганизмы должны по­стоянно к ней приспосабливаться.

Как на человека, животных и растения, так и на микроорга­низмы существенное влияние оказывают различные факторы внешней среды. Их можно разделить на три группы: физические, химические и биологические.

Антимикробные факторы окружающей среды

Физические

Химические

Биологические

Результаты действия факторов внешней среды на микроорга­низмы:

1. Благоприятные.

2. Неблагоприятные (бактериостатическое и бактерицидное действие).

3. Изменяющие свойства микроорганизмов.

4. Индифферентные.

Антимикробные факторы окружающей среды используются при стерилизации , дезинфекции, лечении, соблюдении правил асеп­тики и антисептики и др.

1. Физические факторы, влияющие на микроорганизмы

Из физических факторов наибольшее влияние на микроорга­низмы оказывают:

1. Температура.

2. Высушивание (лиофильная сушка).

3. Лучистая энергия (СВЧ-энергия, ультрафиолетовые лучи, ионизирующая радиация).

4. Ультразвук.

5. Давление (атмосферное, гидростатическое, осмотическое).

6. Электричество.

7. Кислотность среды (рН среды).

8. Наличие кислорода.

9. Влажность и вязкость среды обитания.

Температура - один из самых мощных факторов воздействия на микроорганизмы. Они или выживают, или погибают, или при­спосабливаются и растут.

Последствия влияния температуры на бактерии:

1. Способность микроорганизмов к выживанию после длитель­ного нахождения в экстремальных температурных условиях.

2. Способность микроорганизмов к росту в экстремальных тем­пературных условиях.

Жизнедеятельность каждого микроорганизма ограничена оп­ределенными температурными границами.

Эту температурную зависимость обычно выражают тремя точ­ками:

§ минимальная (min) температура - ниже которой размножение прекращается;

§ оптимальная (opt) температура - наилучшая температура для роста и развития микроорганизмов;

§ максимальная (max) температура - температура, при которой рост клеток или замедляется, или прекращается совсем.

Оптимальная температура обычно приравнивается к темпера­туре окружающей среды.

Все микроорганизмы по отношению к температуре условно можно разделить на 3 группы: психрофилы, мезофиллы, термо­филы.

Сапрофиты

Иерсинии

Псевдомонады

Клебсиеллы

Листерии и др.

Оптимальная температура роста и размножения психрофилов

Психрофилы - это холодолюбивые микроорганизмы, растут при низких температурах: min t - 0°С, opt t - от 10-20°С, max t - до 35°С. К таким микроорганизмам относятся обитатели северных морей и водоемов , а также некоторые патогенные бактерии - возбудители иерсиниоза, псевдомоноза, клебсиеллеза, листериоза и др.

К действию низких температур многие микроорганизмы очень устойчивы. Например, листерии, холерный вибрион, некоторые виды синегнойной палочки (Pseudomonas аtrobacter) долго могут храниться во льду, не утратив при этом своей жизнеспособности.

Некоторые микроорганизмы выдерживают температуру до ми­нус 190°С, а споры бактерий могут выдерживать до минус 250°С. Действие низких температур приостанавливает гнилостные и бро­дильные процессы, поэтому в быту мы пользуемся холодильни­ками.


При низких температурах микроорганизмы впадают в состоя­ние анабиоза, при котором замедляются все процессы жизнедея­тельности, протекающие в клетке. Однако, многие из психрофилов способны быстро вызывать микробиальную порчу пищевых про­дуктов и кормов, хранящихся при 0°С.

Большинство па­тогенных и ус­ловно-патогенных микроорганизмов

Оптимальная температура роста и размножения мезофилов

Мезофилы - это наиболее обширная группа бактерий, в кото­рую входят сапрофиты и почти все патогенные микроорганизмы, так как opt температура для них 37°С (температура тела), min t - 10°С, max t - 50°C.

Термофилы - теплолюбивые бактерии, развиваются при тем­пературе выше 55°С, min t для них - 40°С, max t – до 100°С. Эти микроорганизмы обитают в основном в горячих источниках. Среди термофилов встречается много споровых форм (В. stearothermo-philus. В. aerothermophilus) и анаэробов.

https://pandia.ru/text/78/203/images/image006_13.jpg" width="335 height=140" height="140">

Вегетативные формы Споры

Температурные диапазоны гибели микроорганизмов

Споры бактерий гораздо устойчивей к высоким температурам, чем вегетативные формы бактерий. Например, споры бацилл си­бирской язвы выдерживают кипячение в течение 2 часов.

Все микроорганизмы, включая и споровые, погибают при тем­пературе 165-170°С в течение 1 часа.

Действие высоких температур на микроорганизмы положено в основу стерилизации.

Высушивание . Для нормальной жизнедеятельности микроор­ганизмов нужна вода. Высушивание приводит к обезвоживанию цитоплазмы и нарушается целостность цитоплазматической мем­браны, что ведет к гибели клетки.

Некоторые микроорганизмы (многие виды кокков) под влия­нием высушивания погибают уже через несколько минут.

Более устойчивыми к высушиванию являются возбудители ту­беркулеза, которые могут сохранять свою жизнеспособность до 9 месяцев, а также капсульные формы бактерий.

Особенно устойчивыми к высушиванию являются споры. На­пример, споры возбудителя сибирской язвы могут сохраняться в почве более 100 лет.

Для хранения микроорганизмов в музеях микробных культур и изготовления сухих вакцинных препаратов из бактерий применя­ется метод лиофильной сушки.

Сущность метода состоит в том, что в аппаратах для лиофиль­ной сушки – лиофилизаторах микроорганизмы сначала заморажи­вают, а потом высушивают при положительной температуре в ус­ловиях вакуума . При этом цитоплазма бактерий замерзает и пре­вращается в лед, а потом этот лед испаряется и клетка остается жива (переход воды из замороженного состояния в газообразное, минуя жидкую фазу - сублимация ).

Замороженные бактерии (I этап лиофильного высушивания)

Образование внеклеточного (а) и внутриклеточного (б) льда при лиофильном высушивании бактерий

Лиофильно высушенные диплококки

При правильном лиофильном высушивании микробные клетки переходят в состояние анабиоза и сохраняют свои биологические свойства в течение нескольких лет.

Лифильно высушенные живая (а) и погибшая (б) бактерии

Если режим лиофильного высушивания не соблюдался (а для разных видов бактерий он различен), то клеточная стенка у бакте­рий разрывается и они гибнут.

Лучистая энергия . Существуют разные формы лучистой энер­гии, характеризующиеся различными свойствами, силой и харак­тером действия на микроорганизмы.

В природе бактериальные клетки постоянно подвергаются воз­действию солнечной радиации.

Прямые солнечные лучи губительно действуют на микроорга­низмы. Это относится к ультрафиолетовому спектру солнечного света (УФ-лучи).

Растения

Фотосинтез

Фототропизм

Фотопериодизм

Бактерии

Фототаксис

Мутации

Бактерицидное

действие

Животные и человек

Фотоэритема

Фотодинамика

Вследствие присущей УФ-лучам высокой химической и биоло­гической активности, они вызывают у микроорганизмов инактива­цию ферментов, коагуляцию белков, разрушают ДНК в результате чего наступает гибель клетки. При этом обеззараживается только поверхность облученных объектов из-за низкой проникающей спо­собности этих лучей.

Патогенные бактерии более чувствительны к действию УФ-лу­чей, чем сапрофиты, поэтому в бактериологической лаборатории микроорганизмы выращивают и хранят в темноте.

Опыт Бухнера показывает, насколько УФ-лучи губительно дей­ствуют на бактерии: чашку Петри с плотной средой засевают сплошным газоном. Часть посева накрывают бумагой, и ставят чашку Петри на солнце, а затем через некоторое время (15-30 мин) ее ставят в термостат.

Прорастают только те микроорганизмы, которые находились под бумагой. Поэтому значение солнечного света для обеззараживания ок­ружающей среды очень велико.

Используемые для этих целей приборы, испускающие ультра­звук, называют ультразвуковыми дезинтеграторами (УЗД).

Высокое давление . К высокому атмосферному или гидроста­тическому давлению бактерии, а особенно споры, очень устой­чивы (барофильные микроорганизмы). В природе встречаются бактерии, которые живут в морях и океанах на глубине м под давлением от 100 до 900 атм. Эти бактерии являются са­профитными и относятся к археям.

Бактерии переносят давление атм, а споры бакте­рий - до 20000 атм. При таком высоком давлении снижается ак­тивность бактериальных ферментов и токсинов.

Сочетанное действие повышенных температур и повышенного давления используется в паровых стерилизаторах (автоклавах) для стерилизации паром под давлением.

Важным фактором является внутриклеточное осмотическое давление у различных микроорганизмов.

Влияние осмотического давления на микробную клетку:

1. Плазмолиз (потеря воды и гибель клетки) происходит с мик­роорганизмами, если их помещают в среду с более высоким осмо­тическим давлением.

2. Плазмоптиз (поступление воды в клетку и разрыв клеточной стенки) – происходит с микроорганизмами при перемещении их в среду с низким осмотическим давлением.

https://pandia.ru/text/78/203/images/image034.jpg" width="219" height="142">Водород" href="/text/category/vodorod/" rel="bookmark">водородных ионов.

Для ацидофилов оптимальная для жизни рН -6,0-7,0; для алка­лофилов - 9,0-10,0; для нейтралофилов - 7,5.

Значение рН оказывает существенное влияние на синтез того или иного метаболита.

В ряде случаев оптимум для роста культуры и образования продукта неодинаков. С увеличением температуры культивирова­ния диапозон переносимых значений рН сужается.

Вязкость среды определяет диффузию питательных веществ из объема среды к поверхности клетки.

2. Химические факторы

Известно, что изменение состава и концентрации питательных элементов питательной среды может затормозить, прекратить или стимулировать процессы роста и размножения бактериальной по­пуляции. Следовательно, химические факторы способны влиять на жизнедеятельность микроорганизмов.

Степень воздействия химического агента на микроорганизм может быть различной. Она зависит от химического соединения, его концентрации, продолжительности воздействия, а так же от индивидуальных свойств микроорганизма.

Бактериостатическое действие регистрируется в том случае, если химическое вещество подавляет размножение бактерий, а после его удаления процесс размножения восстанавливается.

Бактерицидное действие вызывает необратимую гибель мик­роорганизмов.

Некоторые химические вещества безразличны для бактерий, другие могут стимулировать процессы их развития или являться питанием для бактерий. Например, соль NaCl в малых количест­вах добавляют в питательные среды.

Химические вещества, способные оказывать бактерицидное действие на разные группы микроорганизмов, используют для де­зинфекции.

Дезинфекция (уничтожение инфекции, обеззараживание объ­ектов окружающей среды) – это комплекс мероприятий, направ­ленный на уничтожение возбудителей инфекционных болезней в окружающей среде.

Другими словами, дезинфекция – это уничтожение патогенных микроорганизмов во внешней среде с помощью химических ве­ществ, обладающих антимикробным действием.

К химическим веществам, действующим на микроорганизмы относятся:

1. Окислители.

2. Поверхностно-активные вещества.

3. Галогены.

4. Соли тяжелых металлов.

5. Кислоты.

6. Щелочи.

7. Спирты.

8. Фенолы, крезолы и их производные.

9. Альдегиды (формальдегид, формалин).

10. Красители.

По механизму противомикробного действия все химические вещества подразделяются на 5 классов :

1. Денатурирующие белки – коагулируют и свертывают белки.

2. Омыляющие белки – приводят к набуханию и растворению белков.

3. Окисляющие белки - повреждают сульфгидрильные группы активных белков.

4. Реагирующие с фосфатнокислыми группами нуклеиновых кислот.

5. Поверхностно активные вещества - вызывают повреждения клеточной стенки.

Денатурирующие вещества :

§ фенол, крезол и их производные - бактерицидное действие связано с повреждением клеточной стенки и денатурацией белков цитоплазмы;

§ формальдегид - бактерицидное действие обусловлено дегид­ратацией поверхностных слоев и денатурацией белка;

§ спирты - бактерицидное действие обусловлено способностью отнимать воду и свертывать белки;

§ соли тяжелых металлов (сулема, мертиолат, соли ртути, се­ребра, цинка, свинца, меди) - положительно заряженные ионы ме­таллов адсорбируются на отрицательно заряженной поверхности бактерий и изменяют проницаемость их цитоплазматической мем­браны, при этом изменяется структура дыхательных ферментов и разобщаются процессы окисления и фосфорилирования в мито­хондриях.

Омыляющие белки – щелочи, гашеная известь.

Окисляющие белки (хлор, бром, йодосодержащие, перекись водорода, перманганат калия) - выделяют активный атомарный кислород, вызывая цепную реакцию свободнорадикального пере­кисного окисления липидов, что ведет к деструкции мембран и белков микроорганизмов.

Поверхностно-активные вещества (жирные кислоты, мыла, моющие средства , детергенты) - изменяют энергетическое соот­ношение поверхности микробной клетки (заряд с отрицательного меняется на положительный), что нарушает проницаемость и ос­мотическое равновесие.

Галогены (хлорсодержащие: хлорная известь, хлорамин Б, ди­хлор-1, сульфохлорантин, хлорцин и др.; йодосодержащие: спир­товый раствор йода, йодинол, йодоформ, раствор Люголя и др.) – разрушают ферментативные структуры бактериальной клетки, уг­нетают гидролитическую и дегидрогеназную активность бактерий, инактивируют такие ферменты, как амилазы и протеазы, денату­рируют белки цитоплазмы, а также выделяют атомарный кисло­род, оказывающий окисляющее действие на микроорганизмы.

Красители (бриллиантовый зеленый, риванол, трипофлавин, метиленовая синь) - обладают сродством к фосфорно-кислым гру-ппам нуклеиновых кислот и нарушают процесс деления бактерий. Многие красители используются в составе антисептиков.

Бактерицидный эффект кислот (салициловая, борная) и ще­лочей (едкий натр) на микроорганизмы обуславливается:

§ дегидратацией микроорганизмов;

§ изменением рН среды;

§ образованием кислотных и щелочных альбуминатов .

Новое поколение дезинфицирующих средств – четвертичные аммонийные соединения (ЧАС) и их соли.

Одним из наиболее эффективных дезинфицирующих средств на сегодняшний день является Велтолен - жидкий концентрат на основе уникальной отечественной, запатентованной субстанции «Велтон» (клатрат ЧАС с карбамидом).

Велтолен оказывает бактерицидное, фунгицидное, спорули­цидное и вирулицидное действие в невысоких концентрациях, безвреден для животных и человека, экологически безопасен.


Механизмы противомикробного действия Велтолена

Антимикробное действие 0,5%-ного раствора Велтолена на возбудителя сибирской язвы B. аnthracis при экспозиция 5 мин. вы­зывает вакуолизацию цитоплазмы бактерий и отслоение клеточ­ной стенки.

на B nthracis при экспозиция 5 мин.

Антимикробное действие 0,5% раствора Велтолена на возбу­дителя сибирской при экспозиция 15 мин. вызывает отслоение клеточной стенки, ее разрыв и вакуолизацию цитоплазмы.

Антимикробное действие 0,5% раствора Велтолена

на B nthracis при экспозиция 15 мин.

Антимикробное действие 0,5% раствора Велтолена на возбу­дителя сибирской при экспозиция 60 мин. вызывает разрушение большей части бактериальных клеток с потерей клеточной стенки и выхода наружу клеточного детрита. Часть спор под действием Велтолена формирует миелиновые фигуры.

Антимикробное действие 0,5% раствора Велтолена

на B nthracis при экспозиция 60 мин.

Активность различных дезинфицирующих веществ не одина­кова и зависит от времени экспозиции, концентрации, темпера­туры дезинфицирующих растворов и окружающей среды.

Дезинфекция с помощью химических веществ в качестве со­ставляющей входит в совокупность мер, направленных на уничто­жение микроорганизмов не только в окружающей среде, но и в макроорганизме, например, в ране и является основой асептики и антисептики.

Асептика - это комплекс профилактических мероприятий, на­правленных на предупреждение попадания микроорганизмов в рану или организм человека и животного.

Антисептика - это комплекс мероприятий, направленных на уничтожение микроорганизмов в ране или в организме в целом, на предупреждение и ликвидацию воспалительного процесса.

Антисептики - это противомикробные вещества, которые ис­пользуются для обеззараживания биологических поверхностей.

К антисептическим химическим веществам относятся краси­тели (метиленовый синий, бриллиантовый зеленый) - обладают денатурирующим и литическим эффектом, и производные 8-окси-хинолина (хинозол, нитроксалин, хинолон) и нитрофурана (фура­цилин, фуразолидон), которые нарушают биосинтетические и ферментативные процессы в бактериальной клетке.

3. Биологические факторы

К биологическим факторам , негативно воздействующим на микроорганизмы, можно отнести:

§ микроорганизмы-антагонисты;

§ пробиотики;

§ бактериофаги;

§ защитные факторы организма (клеточные и гуморальные).

Во внешней среде и в организме человека и животных обитает огромное количество разных видов микроорганизмов, которые по - разному взаимодействуют между собой.

Молочнокислые бактерии

Хищничество – нападение одного вида бактерии на другой с целью использование другого вида в качестве пищи.

https://pandia.ru/text/78/203/images/image049.jpg" width="302" height="201">

Bdellovibrio bacteriovorus проникает в сальмонеллу

Нейтрализм – микроорганизмы не оказывают друг на друга ни­какого влия­ния.

Наибольший интерес для науки и практики представляют раз­личные биологически активные вещества, образующиеся в про­цессе жизнедеятельности микроорганизмов, и одними их них яв­ляется антибиотики.

Антибиотики - продукты метаболизма живых организмов или их аналоги, получаемые синтетическим путем, способные избира­тельно подавлять рост микроорганизмов.

Термин "антибиотик" был предложен В. Вюименом в 1889 г., чтобы обозначить действующий агент процесса "антибиоза", т. е. сопротивления, оказываемого одним живым организмом другому.

В 1929 году А. Флемингом был открыт пенициллин, который в 1940 году удалось выделить в кристаллическом виде.

Механизм действия антибиотиков на бактерии

Классификация антибиотиков

По биологичес-кому

происхождению

По механизму биологического действия

По спектру биологичес-

кого действия

По химическому строению

Эубактерии

Род Pseudomo-nas : пиоцианин,

вискозин.

Ингибирует син­тез клеточной стенки (пеницил­лины, цефало-спорины)

Узкого спек­тра (пеницил-лины, цефа­лоспорины)

Ациклические соединения (микозамин, пирозамин)

Актиномицеты

Род Streptomy ces : тетрациклины, стрептомицины, эритромицин.

Род Мicromono-spora : гентами­цины, сизомицин.

Нарушает фун-кцию мембран

(нистатин, кан­дицидин)

Широкого спектра (тет­рациклины, хлорамфени­кол, гентами­цин, тобра­мицин)

Алициклические соединения (ак­тидион, туевая кислота).

Тетрациклины

Цианобактерии

(малинголид)

Подавляет син­тез РНК (канами-цин, неомицин) и синтез ДНК (ак­тидион, эдеин)

Противоту­беркулезные

(стрептоми­цин, канами­цин)

Ароматические соединения (гал­ловая кислота, хлорамфеникол).

Грибы

(пенициллины)

Ингибиторы син­теза пуринов и пиримидинов (азасерин)

Противо­грибные (нистатин, кандицин)

Кислородсоде-ржащие гетеро­циклические соединения (пе­ницилловая ки­слота, карлина­оксид)

Лишайники, растения, водо­росли (усниновая кислота, хлорел­лин)

Подавляет син­тез белка (кана­мицин, тетра­циклины, эрит­ромицин, хло­рамфеникол)

Противоопу­холевые

(адриамицин)

Макролиды

(эритромицин)

Животного происхождения

(интерферон, эк­молин)

Ингибиторы ды­хания (усниновая кислота, пиоциа­нин). Ингибиторы окислительного фосфорилирова­ния (валиноми­цин, олигомицин)

Противо­амебные (фумагиллин)

Аминоглико­зиды (тобрами­цин, гентами­цин, стрептоми­цины).

Полипептиды

(грамицидины)

«Феномен жемчужного ожерелья» у возбуди­теля сибирской язвы при выращивании его на пи­тательной среде с пени­циллином

В результате дейст­вия на B. аnthracis пени-циллина, у возбудителя разрушается клеточная стенка, образуются ша­ровидные протопласты, соединенные между собой в виде нитки бус.

Пенициллин способен вызвать разрушение клеточной стенки у многих видов бактерий. До недавнего времени к нему были осо­бенно чувствительны стафилококки и стрептококки.

У большинства грамотрицательных бактерий к пенициллину выработалась устойчивость, связанная с их способностью синте­зировать фермент пенициллиназу, разрушающий пенициллин.

https://pandia.ru/text/78/203/images/image055.jpg" width="204" height="169">.jpg" width="224" height="168">DIV_ADBLOCK169">

Возможные механизмы действия пробиотиков:

1. Подавление живых патогенных и условно-патогенных мик­роорганизмов.

а) продукция антибактериальных веществ - бактериоцинов;

б) конкуренция за источники питания;

в) конкуренция за рецепторы адгезии.

2. Влияние на микробный антагонизм.

а) уменьшение ферментативной активности;

б) увеличение ферментативной активности.

3. Стимуляция иммунитета.

б) увеличение активности макрофагов.

Пробиотические препараты, выпускаемые в странах –

членах ЕС и используемые в них виды микроорганизмов

Препарат

Вид микроорганизмов

Жидкое ацидофильное мо­локо, продукты класса йогур­тов (повсеместно)

L. acidophilus, B. bifidum, B. longum

Биоград, Бифийогурт Йога-Лайн, Лактоприв, Эугалин, Витацидофилюс, Омнифлора Мутафлор, Коливит, Симби­офлор, Лактана-Б (Германия)

L. acidophilus, S. thermophilus, B. longum, B. bifidum, E. coli

Гефилак, Бактолак (Финлян­дия)

L. rhamnosum, L. casei, S. faecium

Йокульт, Бифидер, Тойоцерин, Лакрис, Грауген, Кальспорин, Миаризан, Королак, Биофер­мин, Балантол, Лактофед (Япония)

L. rhamnosum, L. casei, E. coli, B. cereus, L. sporo-genes, B. subtilis, B. thermophilus, C. butyricum, B. pseudolongum, S. faecalis, L. acidophilus, B. toyo

Биокос (Чехия)

B. bifidum, L. acidophilus, P. acidilactis

Синелак, Ортобактер, Бифи­диген, Лиобифидус, Пробио­мин, Нормофлор, Биолакталь (Франция)

L. bulgaricus, L. acidophilus, B. longum E. coli, S. thermophilus, B. bifidum

Инфлоран (Швейцария)

S. thermophilus, L. bulgaricus, L. acidophilus

Пионер (Испания)

Комплекс кишечной микро­флоры

Вентракс оцидо (Швеция)

L. acidophilus, S. faecium, S. thermophilus

Гастрофарм, Нормофлор (Болгария)

L. acidophilus, L. bulgaricus

Био-Плюс2 (Германия, Дания)

B. subtilis, B. licheniformis

Протексин, Припалак (Голлан­дия)

Бактисубтил (Югославия)

Эсид-Пак-4-Уэй, Лакто-Сак (США)

S. thermophilus, L. acidophilus

Кроме перечисленных видов бактерий, в ряде стран в составе пробиотиков для животных используют Saccaharomyces cerevisiae, Candida pintolopesii, Aspergillus niger и Aspergillus ory­sae.

К молочнокислым бактериям, широко используемым для про­изводства пробиотиков, относятся молочнокислые стрептококки (S. lactis и S. cremoris) и лактобактерии (L. acidophilum, L. casei, L. plantarum, L. bulgaricum).

Метаболиты молочнокислых бактерий и их регуляторные функции

Механизм действия

Биологический эффект

Молочная кислота

Синергизм сочетания с уксусной, пропионовой, масляной кисло­тами. Синтез внутри - и внеклеточ­ного лактоферрина.

Ингибиция роста патогенных микро­организмов. Снижение синтеза ток­синов у плесневых грибов корма.

Углекислый газ

Поддержание анаэробных условий и высокого парциального давления.

Снижение дыхательного потен­циала у аэробных кишечных бакте­рий.

Перекись водорода

Образование гипотиоцината в бак­териях. Истощение ферментной системы у каталазозависящих мик­роорганизмов. Инактивация клеточ­ных энзимов.

Токсическое действие на каталазо­положительную микрофлору. Сни­жение синтеза белков, ограничение передачи генетической информа­ции, снижение факторов адгезии у грамотрицательных бактерий.

Связывание антилизоцимного фактора у энтеропатогенных бак­терий. Лизис клеточных стенок бактерий.

Повышение фагоцитарной актив­ности макрофагов. Снижение коло­низационной активности у грамот­рицательных бактерий. Неспеци­фическая стимуляция макрофагов.

Бактериоцины

Ограничение синтеза белков. На­рушение процессов транспорта через клеточную мембрану, сниже­ние синтеза ДНК, уплотнение ядерного материала, изменение рибосом и лизосом.

Бактерицидное и бактериостатиче­ское действие. Сдерживание про­цессов деления бактерий, наруше­ние передачи наследственной ин­формации. Деструкция рецептор­ных связей.

В России чистые культуры молочнокислых бактерий стали применять с 1890 года. Большой вклад в разработку способов при­готовления чистых культур, сохранения их в сухом виде и исполь­зования в производстве кисломолочных продуктов внёсли и.

Сухожаровая стерилизация - проводится в печах Пастера (су­хожаровой шкаф). Это шкаф с двойными стенками, изготовленный из металла и асбеста, нагревающийся с помощью электричества и снабженный термометром. Сухим жаром стерилизуют, в основном, лабораторную посуду. Обеззараживание материала в нем проис­ходит при 160°С в течение 1 часа.

В бактериологических лабораториях используется такой вид стерилизации, как прокаливание над огнем (фломбирование) . Этот способ применяют для обеззараживания бактериологических пе­тель, шпателей, пипеток. Для прокаливания над огнем используют спиртовки или газовые горелки.

К физическим способам стерилизации относятся также УФ-лучи и рентгеновское излучение . Такую стерилизацию проводят в тех случаях, когда стерилизуемые предметы не выдерживают вы­сокой температуры.

Тиндализация (двухступенчатая стерилизация) используется для обеззараживания материала, обсемененного спорами бакте­рий. При этом используется два режима нагревания материала – первый режим является оптимальным для прорастания спор и пе­рехода споровой формы бактерий в вегетативную, а второй режим направлен на уничтожение вегетативных клеток микроорганизмов.

Механическая стерилизация (фильтрующая стерилизация) - проводится при помощи фильтров (керамических, стеклянных, ас­бестовых) и особенно мембранных ультрафильтров из коллоид­ных растворов нитроцеллюлозы.

Морфология" href="/text/category/morfologiya/" rel="bookmark">морфология (округление, удлинение клетки), куль­туральные свойства (стафилококки не образуют пигмент при не­достатке кислорода), биохимические или ферментативные свой­ства (выработка адаптивных ферментов у эшерихий - фермент лактаза на среде с лактозой). При фенотипической изменчивости кАк правило, через определенное время происходит возврат к ис­ходному состоянию («новый фенотип» утрачивается).

2. Генотипическая изменчивость (наследуемая) - возникает в результате мутаций и генетических рекомбинаций. При этом смена фенотипа связана с изменением генотипа и передается по на­следству. Нет возврата к исходному фенотипу.

Мутации (от лат. mutatio - изменять) - это стойко передаваемые по наследству структурные изменения генов, связанные с реорга­низацией нуклеотидов в молекуле ДНК. При мутациях изменяются участки геномов (т. е. наследственного аппарата).

Бактериальные мутации могут быть спонтанными (самопроиз­вольными) и индуцированными (направленными), т. е. появляются в результате обработки микроорганизмов специальными мутаге­нами (химическими веществами, температурой, излучением и т. д.).

В результате бактериальных мутаций могут отмечаться:

§ изменение морфологических свойств микроорганизмов;

§ изменение культуральных свойств;

§ возникновение у микроорганизмов устойчивости к лекарствен­ным препаратам;

§ ослабление патогенных свойств и др.

К генетическим рекомбинациям относятся рекомбинации ге­нов, которые происходят вследствие трансформации, трансдукции и конъюгации.

Трансформация -передача генетического материала от бак­терии-донора бактерии-реципиенту при помощи изолированной ДНК другой клетки.

Бактерии, способные воспринимать ДНК другой клетки, назы­ваются компетентными.

Состояние компетентности часто совпадает с логарифмиче­ской фазой роста.

Для трансформации необходимо создавать особые условия, например, при добавлении в питательную среду неорганических фосфатов частота трансформации повышается.

Трансдукция - это перенос наследственного материала от бактерии-донора к бактерии-реципиенту бактериофагом.

Например, с помощью бактериофага можно воспроизвести трансдукцию жгутиков, ферментативные свойства, резистентность к антибиотикам, токсигенность и другие признаки.

Конъюгация - передача генетического материала от одной бактерии другой путем непосредственного контакта. Причем про­исходит односторонний перенос генетического материала - от до­нора реципиенту . Необходимым условием для конъюгации явля­ется наличие у донора цитоплазматической кольцевой молекулы ДНК - плазмиды и специфического фактора плодовитости F. У грамотрицательных бактерий обнаружены половые F-волоски, че­рез которые происходит перенос генетического материала. Клетки, играющие роль донора, обозначают F+, а реципиенты – F–-.

3. Промежуточная изменчивость - диссоциация. В однородной популяции бактерий появляются различные по биологическим свойствам клетки, образующие две формы колоний – R (шерохо­ватые, с рваными краями, часто связанные с приобретением бак­териями патогенных свойств) и S (круглые, гладкие, блестящие).

Заключение

На микроорганизмы во внешней среде воздействует огромное количество разнообразных неблагоприятных факторов, что за­ставляет их постоянно совершенствоваться, приспосабливаться и эволюционировать.

Именно неблагоприятные факторы внешней среды являются для микроорганизмов движущей силой видообразования.

Вопросы для самоконтроля

1. Результаты действия факторов внешней среды на микроорганизмы.

2. Какие физические факторы оказывают наибольшее влияние на микроорганизмы?

3. Каков температурный диапазон выращивания разных видов микроорганизмов?

4. В чем сущность лиофильного высушивания микроорганизмов?

5. Опишите опыт Бухнера.

6. Значение осмотического давления для бактерий.

7. На какие группы классифицируют микроорганизмы по отношению к концентрации водородных ионов в среде?

8. Что такое дезинфекция и дезинфектанты?

9. Классификация химических веществ по механизму противомикробного действия.

10. Какие средства называют антисептиками?

11. Перечислите биологические факторы, негативно воздействующие на микроорганизмы.

12. Какие взаимоотношения между бактериями обуславливает антагонистический симбиоз?

13. Каков механизм действия антибиотиков на бактерии?

14. Назовите возможные механизмы действия пробиотиков.

15. На какие группы подразделяют бактериофаги?

16. Что такое фильтрующая стерилизация?

17. Назовите отличия между фенотипической и генотипической изменчивостью бактерий.

К числу основных физических факторов, воздействующих на микроорганизмы как в естественной среде обитания, так и в условиях лаборатории, относят температуру, свет, электричество, высушивание, различные виды излучения, осмотическое давление и др.

Температура . О влиянии температуры на микроорганизмы судят по их способностирасти и размножаться в определенных температурных границах. Для каждого вида микроорганизмов определена оптимальная температура развития. В зависимости от пределов этой температуры бактерии разделены на три физиологические группы:

· Психрофильные микроорганизмы (психрофилы) – способны расти и размножаться от 0 0 С до 30…35 0 С, а температурный оптимум составляет 15…20 0 С. Среди представителей этой группы обитатели северных морей, почвы, сточных вод.

· Мезофильные бактерии – способны расти и размножаться при температуре от 10 0 С до 40…45 0 С, температурный оптимум – 30…37 0 С. Наиболее обширная группа микроорганизмов, в нее включают большинство сапрофитов ивсе патогенные микроорганизмы.

· Термофильные бактерии – способны расти и размножаться в температурных границах от 35 0 С до 70…75 0 С, температурный оптимум – 50…60 0 С. Микроорганизмы этой группы довольно часто встречаются в природе: почве, воде, теплых минеральных источниках, пищеварительномтракте животных и человека

· Экстремально-термофильные бактерии – способны существовать при температурах от 40 до 93 0 С и выше. Возможность существования при высоких температурах обусловлена особым составом липидных компонентов клеточных мембран, высокой термостабильностью белков, ферментов и клеточных структур.

Высокие и низкие температуры по-разному влияют на микроорганизмы. При низких температурах клетка переходит в состояние анабиоза, в котором она может существовать длительное время. Так, эшерихии сохраняют жизнеспособность при -190 0 С до 4 месяцев, возбудитель листериоза при -10 0 С до 3 лет. Низкие температуры приостанавливают гнилостные и бродильные процессы. На этом принципе основано сохранение продуктов в холодильниках.

Высокая температура губительно действует на микробы. Чем выше температура, тем меньшее время необходимо для инактивации микроорганизмов. В основе бактерицидного действия высоких температур лежит разрушение ферментов за счет денатурации белков и нарушения осмотического барьера.

Разные виды микроорганизмов обладают различной устойчивостью к высоким температурам, значительно отличается устойчивость спор и вегетативных клеток. Так большинство вегетативных форм патогенных микроорганизмов гибнут при температуре 80…100 0 С в течение 1 минуты, а споры возбудителя сибирской язвы выдерживают кипячение более 1 часа.

Действие видимого излучения (света) .

Видимый (рассеянный свет), имеющий длину волны 300…1000 нм, обладает способность угнетать рост и жизнедеятельность большинства микроорганизмов. В связи с этим культивирование микроорганизмов осуществляют в темноте. Видимый свет положительно влияет только на бактерии, которые используют свет для фотосинтеза.

Прямые солнечные лучи действуют на микроорганизмы более активно, чем рассеянный свет. Бактерицидное действие света связано с образованием гидроксильных радикалов и других высокореактивных веществ, разрушающих вещества, входящие в состав клетки. Например, происходит инактивация ферментов.

Микроорганизмы-сапрофиты более устойчивы к воздействию света, чем патогенные. Это объясняется тем, что они, чаще подвергаясь действию прямых солнечных лучей, более адаптированы к ним. В связи с этим следует отметить большую гигиеническую роль солнечного света. Именно под воздействием солнечного излучения происходит самоочищение воздуха, верхних слоев почвы и воды.

Ультрафиолетовое излучение .

Ультрафиолетовое излучение с длиной волны 295…200 нм является бактерицидно активным, то есть способным губительно действовать на микроорганизмы. Механизм действия ультрафиолетового излучения заключается в его способности частично или полностью подавлять репликацию ДНК и повреждать рибонуклеиновые кислоты (особенно мРНК).

Ультрафиолетовое излучение широко применяют для санации воздуха в животноводческих помещениях, в лабораториях, в промышленных цехах, микробиологических боксах. Для дезинфекции воздуха промышленность выпускает различные лампы. В животноводческой практике широко применяют установки ИКУФ-1, как источник ультрафиолетового и инфракрасного излучения.

Ионизирующее излучение .

Ионизирующее (рентгеновское) излучение представляет собой электромагнитное излучение с длиной волны 0,006…10нм. В зависимости от длины волны различают гамма-излучение, бета-излучение и альфа-излучение. Наиболее активным действие на биологические объекты отличается гамма-излучение, но даже его бактерицидные свойства значительно ниже, чем бактерицидные свойства ультрафиолетового излучения. Гибель бактерий наступает только при облучении их большими дозами от 45000 до 280000 рентген. Отдельные виды способны выживать в воде атомных реакторов, где величина радиоактивного облучения достигает 2…3 млн. рентген. Более того, получены данные, что воздействие небольших дозгамма-излучения на патогенные микроорганизмы, способны усилить их вирулентные свойства.

Механизм действия рентгеновского излучения заключается в поражении ядерных структур, в частности нуклеиновых кислот цитоплазмы, что приводит к гибели микробной клетки или изменению ее генетических свойств (мутации).

Электричество .

Электрический ток малой и высокой частоты уничтожает микроорганизмы. Особенно сильным бактерицидным действием обладают токи ультравысокой частоты. Они приводят в колебание молекулы всех элементов клетки, вследствие чего происходит быстрое и равномерное нагревание всей массы клетки не зависимо от температуры окружающей среды. Кроме того, установлено, что длительное воздействие токов высокой частоты приводит к электрофорезу некоторых компонентов питательной среды. Образующиеся при этом соединения инактивируют микробную клетку.

Ультразвук .

Механизм бактерицидного действия ультразвука (волны с частотой 20 000 Гц) заключаетсяв том, что в цитоплазме микроорганизмов, находящихся в жидкой среде, образуется кавитационная полость, которая заполняется парами жидкости, в пузырьке возникает давление, что приводит к дезинтеграции цитоплазматических структур. Ультразвук используют для стерилизации пищевых продуктов и дезинфекции предметов.

Аэроионизация .

Аэроионы, несущие положительный или отрицательный заряд, возникают в воздухе при искусственной или естественной ионизации. Наибольшее влияние на бактерии оказывают отрицательно заряженные ионы, действуя уже в средних концентрациях (5*10 4 в 1 см 3 воздуха). Положительно заряженные ионы обладают менее выраженным бактерицидным действием, они способны задерживать рост и развитие микроорганизмов только в больших концентрациях (10 6 в 1 см 3 воздуха). Сила действия аэроионов зависит от их концентрации, длительности экспозиции и расстояния от источника. Используют аэроионы для обеззараживания воздуха жилых помещений, цехов предприятий, медицинских учреждений.

Почти все факторы физического воздействия на микроорганизмы могут быть использованы с целью стерилизации. Стерилизация – уничтожение патогенных и непатогенных микроорганизмов, их вегетативных и споровых форм в каком-либо объекте. Стерилизации подвергают питательные среды, стеклянную посуду, инструменты, перевязочный материал, халаты. Стерилизации также подвергают воздух и предметы в микробиологических боксах.

Механизм действия различных методов стерилизации не одинаков, но в основе каждого лежит способность нарушать жизненные процессы микробной клетки (денатурация белков, угнетение функции ферментных систем).

Физические методы стерилизации:

1. Прокаливание (фламбирование). Подвергаются металлические предметы (петли, иглы, скальпель, ножницы, шпатель).

2. Стерилизация путем кипячения. Кипячением стерилизуют иглы, шприцы, пинцеты, ножницы, скальпели и другие инструменты, которые раскладывают в стерилизаторах на решетчатые вставки. В стерилизатор наливают дистиллированную воду в количестве, достаточном для полного закрывания инструментов. В воду можно добавлять 2% гидрокарбоната натрия. Кипятят в течение 25 – 30 минут.

3. Стерилизация сухим жаром. Стерилизация осуществляется при помощи сухого нагретого воздуха в сушильном шкафу с двойными стенками (печь Пастера). Снаружи шкаф облицован теплонепроницаемым материалом. Контроль температурного режима осуществляется при помощи температурного датчика. В сушильном шкафу стерилизуют чистую, предварительно высушенную стеклянную посуду, завернутую в пергаментную бумагу. Режимы стерилизации: 155…160 0 –2 часа; 165…170 0 – 1…1,5 часа; 180 0 – 1 час. Время экспозиции отмечают от момента достижения температурой заданного значения.

4. Стерилизация текучим паром. Стерилизацию проводят в аппарате Коха, который представляет собой сосуд с неплотно закрытой крышкой. На дне аппарата имеется решетчатая подставка, до уровня которой наливают воду. На подставку помещают сосуд с решетчатым дном, в котором находятся объекты, подлежащие стерилизации (питательные среды). В процессе кипения воды образуются пары, нагревающие содержимое сосуда. Время стерилизации – 30…40 минут. Однократная стерилизация уничтожает только вегетативные формы бактерий, а споры сохраняют свою жизнеспособность, стерилизацию проводят «дробно» - три дня подряд. Таким способом стерилизуют среды с углеводами, молоко, среды с желатиной, то есть субстраты, которые не выдерживают нагревания более 100 0 С, длительного действия пара или сухого жара.

5. Тиндализация – это дробная стерилизация в водяной бане при 56…58 0 С в течение 5…6 суток: в первый день прогревают в течение 2 часов, в последующие дни – по1 часу. Метод используется для стерилизации материалов, разрушающихся при температуре выше 58…60 0 С – веществ, содержащих белки (сыворотка крови).

6. Пастеризация – это метод не полной стерилизации, используемы с целью сохранения питательной ценности пищевого продукта, которая может снижаться при кипячении. Продукт нагревают при 80 0 С в течение 30 минут, а затем резко охлаждают до 4…8 0 С. Резкое охлаждение препятствует прорастанию спор и последующему размножению бактерий.

7. Стерилизация паром под давлением (автоклавирование). Это самый эффективный метод стерилизации. Принцип стерилизации основан на том, что чистый насыщенный водяной пар при высоком давлении, конденсируясь, повышает температуру внутри автоклава выше температуры кипения. При повышении давления пара соответственно повышается и температура в стерилизационной камере: 50,6 кПа (0,5 атм.) – 110…112 0 С, 101,3 кПа (1 атм.) – 120…121 0 С, 151,9 кПа (1,5 атм.) – 124…126 0 С, 202,6 кПа (2 атм.) – 132…133 0 С.Конструкции и объем стерилизационной камеры автоклавов могут быть различными (горизонтальные и вертикальные), но принцип действия остается таким же. В автоклаве стерилизуют питательные среды, выдерживающие температуру выше 100 0 С, стеклянную посуду, завернутую в бумагу, перевязочный материал, халаты (в биксах). Кроме того, обеззараживают микробные культуры, отработанные питательные среды, посуду. Режимы работы автоклава нуждаются в постоянном контроле. Для этого используют химические и биологические методы.

8. Стерилизация фильтрованием . Осуществляется пропускание материала через бактериологические фильтры. Фильтрация связана с механической задержкой бактерий мелкопористыми фильтрами и с адсорбционной способностью материала из которого изготовлен фильтр. Фильтрации обычно подвергают жидкости не выдерживающие нагревания. Различают фильтры:

· керамические – их изготавливают из каолина или кварцевого песка;

· асбестовые - фильтры Зейтца (пластины из смеси асбеста с целлюлозой);

· мембранные – имеют вид тонких листков белой бумаги, ихготовят из гемицеллюлозы, обработанной соответствующими реактивами, температурой и прессованием. Эти фильтры различают по диаметру и величине пор, имеют наиболее точную калибровку.

Стерильность фильтратов контролируют высевом на питательные среды с термостатированием.

9. Стерилизация ультрафиолетовым излучением. В лаборатории источником ультрафиолетового излучения обычно служат бактерицидные лампы, используемые для обеззараживания воздуха.

Стерилизация ультразвуком. С помощью ультразвука стерилизуют воду, молоко, некоторые продукты, кожевенное сырье. Стерилизующее действие ультразвука связано с разрушением бактериальной клетки под действием кавитационных полостей, возникающих в цитоплазме.