Зависимости скорости роста популяций от их плотности. Пролиферационный — рост, протекающий путем размножения клеток. Он известен в двух формах: мультипликативный и аккреционный. Факторы динамики численности популяций

Если среда не оказывает ограничивающего влияния, то специфическая скорость роста популяции для данных микроклиматических условий постоянна и максимальна. В таких благоприятных условиях скорость роста характерна для некоторой возрастной структуры популяции и служит единственным показателем наследственно обусловленной способности популяции к росту. Она является экспонентой в дифференциальном уравнении роста популяции в нелимитированной среде при специфических физических условиях:

dN / dt = rN; r = dN / (Ndt);

ln n t = rt - ln(N 0 ); n t = N 0 e rt ,

где N 0 - численность в нулевое время, n t - численность в момент времени t, e - основание натуральных логарифмов.

Из уравнения ln n t = t - ln(N 0) можно вычислить скорость роста популяции:

Показатель r - фактическая разность между специфической мгновенной скоростью рождений (b) и специфической мгновенной скоростью гибели организмов (d). Она может быть выражена в виде:

r = b - d.

Общая скорость роста популяции в отсутствие лимитирующего влияния среды зависит от возрастного состава и вклада в репродукцию различных возрастных групп. Следовательно, вид может характеризоваться величинами r в зависимости от структуры популяции. При определении стационарного и стабильного распределения возрастов специфическую скорость роста называют показателем потенциального роста популяции (r max ). Часто этот показатель называют биотическим, или репродуктивным, потенциалом (термин введен Р. Чепменом в 1928 г.). Разность между биотическим потенциалом и фактической скоростью роста считают мерой сопротивления среды, которая характеризует сумму всех лимитирующих факторов, препятствующих реализации биотического потенциала.

Помимо приведенных, используют и другие уравнения роста популяции (Р.Уиттекер, 1980). При неограниченном росте численности популяции можно использовать геометрические и экспоненциальные формулы.

Геометрические формулы:

N 1 / N 0 = R - темп роста популяции за единицу времени;

N 1 = N 0 R t - плотность популяции через время t.

Экспоненциальные формулы:

dN / dt = Nn - скорость роста популяции;

Nt = N 0 e rt - плотность популяции через время t. Математический метод можно использовать и при описании неограниченного роста популяции. В случае ограниченного роста популяции скорость ее роста и плотность можно вычислять по следующим логистическим формулам:

Скорость роста;

где N - плотность популяции; N 0 - начальная плотность популяции; N 1 - плотность популяции через единицу времени роста популяции (t= 1); N t - плотность популяции через время t при постоянной скорости роста, К - емкость среды для максимальной плотности популяции, е - основание натурального логарифма. Величина К называется предельной допустимой нагрузкой на среду, или емкостью среды для данной популяции.

Выбор математической модели определяется задачами исследований и адекватностью модели для каждого определенного случая.

Типы роста популяций. Представление о емкости местообитания. В зависимости от характера роста численности популяций выделяют различные типы их роста. По форме кривых, построенных на арифметической шкале, можно выделить два основных типа роста, описываемых J-образной и S-образной кривыми. Эти два типа кривых могут модифицироваться различным образом (рис. 18).

Рис. 18. Кривые роста численности популяции (по Ю. Одуму, 1875)

А - J-образная, В - S-образная форма кривой роста численности популяции. A 0 - вначале наблюдается неограниченный рост численности популяции; а 1 - вначале наблюдается неограниченный рост численности, затем он прекращается и при благоприятных условиях вновь возобновляется, достигая прежней величины; А 2 - наблюдается нелимитированный рост численности, затем он внезапно прекращается и дальше наблюдаются колебания на более низком уровне; В 0 - происходит рост численности популяции по S-образной кривой, достигая К-уровня; В 2 - вначале наблюдается медленный рост численности, затем скорость возрастает и достигает К-уровня; В 1 - при достижении К-уровня наблюдаются небольшие отклонена от него; В 3 - наблюдаются значительные отклонения от К-уровня.

При J-образной форме кривой роста плотность быстро увеличивается, но затем, когда начинает действовать лимитирующий фактор, рост популяции внезапно прекращается. Такой тип роста может быть описан экспоненциальным уравнением:

Уравнение J-образной кривой то же, что и при определении скорости роста. Разница состоит в том, что величина N имеет предел. Это означает, что относительно неограниченный рост внезапно останавливается, когда популяция исчерпает свои pecypcы (пища, жизненное пространство) или вмешается какой-либо друге фактор. После того как верхний предел N будет достигнут, плотность некоторое время может оставаться на этом уровне либо резко падать. Это характерно для природных популяций насекомых, водорослей и др.

При логистической (S-образной) кривой роста популяции вначале увеличение численности идет очень медленно, затем быстрее, но потом под влиянием факторов сопротивления среды рост популяции постепенно замедляется. Это замедление, обусловливаемо сопротивлением среды, становится все более выраженным и в конечном итоге достигает определенной величины. Затем начинае поддерживаться более или менее устойчивое равновесие. Такой тип роста может быть выражен уравнением Ферхюльста-Пирла:

где К - константа, обозначающая верхний предел увеличения численности популяции, называемая верхней асимптотой для S-образно кривой.

Характерная форма S-образной кривой обусловлена постепенным усилением действия неблагоприятных факторов по мере увеличения плотности популяции. Такой тип роста отличается от J-образного, при котором популяция начинает испытывать давление среды в конце роста.

В простом, или идеальном, случае усиление действия неблагоприятных факторов в зависимости от плотности популяции является линейным и его можно записать следующим образом:

где r - скорость роста популяции или показатель потенциального роста, N- величина популяции, К- максимально возможная величина популяции; е - основание натуральных логарифмов, а - константа интегрирования, определяющая положение кривой относительно начала координат, t - время.

Это уравнение отличается от экспоненциального тем, что содержит выражения (К - N) / К, (r / K) N 2 или (1 - N) / К. Эти выражения представляют три показателя, характеризующих сопротивление среды, создаваемое вследствие роста популяции, которая по мере приближения к пределу уменьшает скорость потенциальной репродукции. Это уравнение отражает закон: скорость увеличения популяции равна максимально возможной скорости роста популяции, умноженной на степень реализации максимальной скорости.

Следует отметить, что для описания изменений численности популяции существует много математических уравнений, решение которых можно представить графически в виде S-образных кривых. Это справедливо почти для любого уравнения, в котором увеличение отрицательных факторов находится в какой-либо зависимости от плотности популяции.

Для сравнения экспериментальных данных с теоретической кривой следует убедиться в том, что показатели, входящие в уравнение, характеризуют воздействия, регулирующие плотность популяции. Ситуации, когда сопротивление среды возрастает линейно при увеличении плотности, могут иметь место в популяциях с простым жизненным циклом. В более высокоорганизованных популяциях, со сложным биологическим циклом и длительными периодами индивидуального развития, изменения, вероятно, отсрочены во времени.

Стратегии развития популяций. В зависимости от типа кривой роста численности популяции выделяют стратегию развития, определяемую такими свойствами, как скорость размножения, характер передачи энергии от одного поколения другому, колебания численности относительно равновесного значения, или К-уровня, скорость изменения численности, приспособленность вида к конкретной территории, размеры особей, продолжительность их жизни и т.д. (табл. 9).

Таблица 9. Характерные особенности r- и K-видов.

r-виды

К-виды

Размножаются быстро (высокая плодовитость, короткое время генерации), поэтому значение r (врожденная скорость роста популяции) высокое

Размножаются медленно (низкая плодовитость, продолжительное время генерации), поэтому значение r низкое

Скорость размножения не зависит от плотности популяции

Скорость размножения зависит от плотности популяции быстро увеличивается, если плотность падает

Энергия и вещество распределяются между многими потомками

Энергия и вещество концентрируются у немногих потомков, родители заботятся о потомстве

Размеры популяции некоторое время могут превышать К-уровень

Размеры популяции близки к равновесному значению, определяемому К-уровнем

Вид не всегда устойчив на данной территории

Вид устойчив на данной территории

Расселяются широко и в больших количествах, у животных может мигрировать каждое поколение

Расселяются медленно

Размножение идет с относительно большими затратами энергии и вещества

Размножение идет с относительно мапыми затратами энергии и вещества большая часть энергии и вещества расходуется на репродуктивный (вегетативный) рост

Малые размеры особей

Крупные размеры особей, у растений деревянистые стебли и большие корни

Малая продолжительность жизни особи

Большая продолжительность жизни особи

Могут поселяться на открытом грунте

Плохо приспособлены к росту на открытых местах

Местообитания сохраняются недолго

Местообитания устойчивы и сохраняются долго

Слабые конкуренты

Сильные конкуренты

Защитные приспособления развиты сравнительно слабо

Хорошие защитные механизмы

Не становятся доминантами

Могут становиться доминантами

Лучше приспособлены к изменениям окружающей среды (менее специализированные)

Менее устойчивы к изменениям ycловий среды (высокая специализация для жизни в устойчивых местообитаниях)

Для характеристики стратегии популяции используют символы r и К. Быстро размножающиеся виды с высоким значением r называются K-видами. К ним относятся типичные пионерные виды нарушенных местообитаний.

Виды с относительно низким значением г называются к-видами. Скорость их размножения в значительной степени зависит от плотности популяции и близка к равновесному значению, определяемому -уровнем. Эти виды характерны для поздних стадий развития сукцессии.

Следует отметить, что существует ряд промежуточных стратегий. Эти две стратегии популяций представляют два способа решения одной задачи - задачи выживания вида. Виды, относящиеся к г-стратегии, быстрее, чем виды, относящиеся к К-стратегии, заселяют нарушенные местообитания, характерные для ранних сукцессий (обнаженнaя горная порода, лесные вырубки, бывшие карьеры), так как они легче распространяются и быстрее размножаются. Виды с К-стратегией более конкурентоспособны и в конечном итоге вытесняют виды с r-стратегией, которые могут перемещаться в другие нарушенные местообитания. Так как виды с r-стратегией обладают высоким репродукционным потенциалом, то это означает, что, оставшись в каком-либо местообитании, они быстро использовали бы доступные ресурсы и превысили бы поддерживающую емкость среды, что привело бы к гибели популяции. Для видов с r-стратегией характерна J-образная кривая роста с быстрым падением численности популяции.

Рост - это увеличение общей массы в процессе развития, приводящее к постоянному увеличению размеров организма. Если бы организм не рос, он никогда бы не стал больше оплодотворенного яйца.

Рост обеспечивается следующими механизмами: 1) увеличением размера клеток, 2) увеличением числа клеток, 3) увеличением неклеточного вещества, продуктов жизнедеятельности клеток. В понятие роста входит также особый сдвиг обмена веществ, благоприятствующий процессам синтеза, поступлению воды и отложению межклеточного вещества. Рост происходит на клеточном, тканевом, органном и организменном уровнях. Увеличение массы в целом организме отражает рост составляющих его органов, тканей и клеток.

Различают два типа роста: ограниченный и неограниченный. Неограниченный рост продолжается на протяжении всего онтогенеза, вплоть до смерти. Таким ростом обладают, в частности, рыбы. Многие другие позвоночные характеризуются ограниченным ростом, т.е. достаточно быстро выходят на плато своей биомассы. Обобщенная кривая зависимости роста организма от времени при ограниченном росте имеет s-образную форму (рис. 8.18).

Рис. 8.18. Обобщенная кривая зависимости роста организма от времени

До начала развития организм имеет некоторые исходные размеры, которые в течение короткого времени практически не изменяются. Затем начинается медленное, а потом и быстрое возрастание массы. Некоторое время скорость роста может оставаться относительно постоянной и наклон кривой не меняется. Но вскоре происходит замедление роста, а потом увеличение размеров организма прекращается. После достижения этой стадии устанавливается равновесие между расходованием материала и синтезом новых материалов, обеспечивающих увеличение массы.

Рис. 8.19. Изменения скорости роста в зависимости от стадии развития человеческого организма.

А - у плода и в первые два года после рождения, Б - в начале постнатального периода

Важнейшей характеристикой роста является его дифференциальность. Это означает, что скорость роста неодинакова, во-первых, в различных участках организма и, во - вторых, на разных стадиях развития. Очевидно, что дифференциальный рост оказывает огромное влияние на морфогенез.

Не менее важной особенностью является такое свойство роста, как эквифинальность. Это означает, что, несмотря на возникающие факторы, особь стремится достичь типичного видового размера. Как дифференциальность, так и эквифинальность роста указывают на проявление целостности развивающегося организма.

Скорость общего роста человеческого организма зависит от стадии развития (рис. 8.19). Максимальная скорость роста характерна для первых четырех месяцев внутриутробного развития. Это объясняется тем, что клетки в это время продолжают делиться. По мере роста плода число митозов во всех тканях уменьшается, и принято считать, что после шести месяцев внутриутробного развития почти не происходит образования новых мышечных и нервных клеток, если не считать клеток нейроглии.

Рис. 8.20. Кривые роста отдельных органов и тканей

по сравнению с кривой обобщенного роста (пояснение см. в тексте)

Дальнейшее развитие мышечных клеток заключается в том, что клетки становятся больше, изменяется их состав, исчезает межклеточное вещество. Этот же механизм действует в некоторых тканях и в постнатальном росте. Скорость роста организма в постнатальном онтогенезе постепенно снижается к четырехлетнему возрасту, затем некоторое время остается постоянной, а в определенном возрасте опять делает скачок, называемый пубертатным скачком роста. Это связано с периодом полового созревания.

Различие в скорости роста органов и тканей показано на рис. 8.20. Кривые роста большинства скелетных и мышечных органов повторяют ход кривой общего роста. То же касается изменения размеров и отдельных органов: печени, селезенки, почек. Однако кривые роста целого ряда других тканей и органов существенно отличаются. На рис. 8.20 приведены общая кривая роста тела и большей части других органов (III ), рост наружных и внутренних органов размножения (IV ), рост мозга, а также черепа, глаз и ушей (II ), рост лимфатической ткани миндалин, червеобразного отростка, кишечника и селезенки (I ).

Значение различных скоростей роста органов и тканей для морфогенеза хорошо видно из рис. 8.21. Очевидно, что в плодном и постнатальном периодах скорость роста головы уменьшается по сравнению со скоростью роста ног.

Рис. 8.21. Пропорции тела человека в эмбриогенезе и после рождения

Рис. 8.22. Формы пролиферационного роста.

А - мультипликативный; Б - аккреционный (пояснение см. в тексте)

Пубертатный скачок роста характеризует только человека и обезьян. Это позволяет оценивать его как этап в эволюции приматов. Он коррелирует с такой особенностью онтогенеза, как увеличение отрезка времени между окончанием вскармливания и половым созреванием. У большинства млекопитающих этот интервал мал и отсутствует пубертатный скачок роста.

Как уже говорилось выше, рост осуществляется за счет таких клеточных процессов, как увеличение размеров клеток и увеличение их количества. Выделяют несколько типов роста клеток.

Ауксентичный - рост, идущий путем увеличения размеров клеток. Это редкий тип роста, наблюдающийся у животных с постоянным количеством клеток, таких, как коловратки, круглые черви, личинки насекомых. Рост отдельных клеток нередко связан с полиплоидизацией ядер.

Пролиферационный - рост, протекающий путем размножения клеток. Он известен в двух формах: мультипликативный и аккреционный.

Мультипликативный рост характеризуется тем, что обе клетки, возникшие от деления родоначальной клетки, снова вступают в деление (рис. 8.22, А ). Число клеток растет в геометрической прогрессии: если n - номер деления, то N n = 2 n . Мультипликативный рост очень эффективен и поэтому в чистом виде почти не встречается или очень быстро заканчивается (например, в эмбриональном периоде).

Аккреционный рост заключается в том, что после каждого последующего деления лишь одна из клеток снова делится, тогда как другая прекращает деление (заштрихована, рис. 8.22, Б ). При этом число клеток растет линейно. Если п - номер деления, то N n = 2n. Этот тип роста связан с разделением органа на камбиальную и дифференцированную зоны. Клетки переходят из первой зоны во вторую, сохраняя постоянные соотношения между размерами зон. Такой рост характерен для органов, где происходит обновление клеточного состава.

Пространственная организация роста сложна и закономерна. Именно с ней в значительной мере связана видовая специфичность формы. Это проявляется в виде аллометрического роста. Его биологический смысл состоит в том, что организму в ходе роста надо сохранить не геометрическое, а физическое подобие, т.е. не превышать определенных отношений между массой тела и размерами опорных и двигательных органов. Так как с ростом тела масса возрастает в третьей степени, а сечения костей во второй степени, то для того, чтобы организм не был раздавлен собственной тяжестью, кости должны расти в толщину непропорционально быстро.

Регуляция роста сложна и многообразна. Большое значение имеют генетическая конституция и факторы внешней среды. Почти у каждого вида есть генетические линии, характеризующиеся предельными размерами особей, такими, как карликовые или, наоборот, гигантские формы. Генетическая информация заключена в определенных генах, детерминирующих длину тела, а также в других генах, взаимодействующих между собой. Реализация всей информации в значительной мере обусловлена посредством действия гормонов. Наиболее важным из гормонов является соматотропин, выделяемый гипофизом с момента рождения до подросткового периода. Гормон щитовидной железы - тироксин - играет очень большую роль на протяжении всего периода роста. С подросткового возраста рост контролируется стероидными гормонами надпочечников и гонад. Из факторов среды наибольшее значение имеют питание, время года, психологические воздействия.

Интересной является зависимость способности к росту от возрастной стадии организма. Ткани, взятые на разных стадиях развития и культивируемые в питательной среде, характеризуются различной скоростью роста. Чем старше зародыш, тем медленнее растут его ткани в культуре. Ткани, взятые от взрослого организма, растут очень медленно.

Чтобы получить полную картину динамики численности той или иной популяции, а также рассчитать скорость ее роста, наряду с данными о том, как распределяется по разным возрастам смертность, необходимо знать также, в каком возрасте особи начинают производить потомство и какова средняя плодовитость особей разного возраста. Поэтому в таблицы для расчета скорости роста популяции к графам, характеризующим выживаемость, добавляют графу, в которой записывают среднее число потомков, появившихся в течение данного возрастного интервала в расчете на одну особь родительского поколения. Для простоты представим себе гипотетический пример животного, начинающего размножаться на третьем году жизни и живущего, как правило, не более 10 лет. В первой графе табл. 4 запишем возраст (х), во второй - долю особей, доживших до данного возраста от начальной численности когорты (l х), в третьей-среднее число потомков, появившихся на свет у особей данного возраста в расчете на одну родительскую особь (m х), в четвертой-произведение доли доживших особей на среднюю их плодовитость (l x m x). Сумма последних величин по всему столбцу есть величина, называемая чистой скоростью воспроизводства. Чистая скорость воспроизводства показывает, во сколько раз увеличивается численность популяции за одно поколение. Если R 0 = 1, то популяция стационарна-численность ее сохраняется постоянной, поскольку каждое последующее поколение точно замещает предыдущее. В демографии обычно составляют отдельные таблицы для женщин (тогда в графе m х - среднее число дочерей, родившихся от матерей денного возраста) и для мужчин (в графе т х - среднее число сыновей, появившихся у отцов данного возраста).

Величина R 0 сильно варьируется в зависимости от вида организмов, а также условий его существования. Так, например, для содержавшейся в хороших лабораторных условиях популяции пашенной полевки Microtus agrestis величина R 0 оказалась равной 5,90, а у лабораторной популяции рисового долгоносика Саlandra oryzae - 113,48. Таким образом, за одно поколение в благоприятных условиях популяция пашенной полевки может увеличить свою численность примерно в 6 раз, а популяция рисового долгоносика - в 113 раз.



x l x m x l x m x
1,00
0,60
0,50
0,45 2,0 0,90
0,40 2,5 1,0
0,37 1,5 0,55
0,33 1,0 0,33
0,20 0,5 0,10
0,10 0,1 0,01
0,05
0,00
Σl x m x = 2.89

Уже из самого способа расчета R 0 ясно, что величина эта определяется комбинацией выживаемости (l x -кривой) и плодовитости (m x -кривой). Перемножая значения l х и m x для каждого возраста х, мы тем самым определяем площадь под кривой l х m х. Так же как и l х, величина m x может сильно меняться в зависимости от вида организмов и условий его существования.

Использовать показатель R 0 при сравнении видов, характеризующихся разной продолжительностью жизни, не всегда удобно. Гораздо лучше употреблять в таких случаях величину r показатель специфической скорости роста популяции. Чтобы установить связь между этими величинами, представим себе, что в течение промежутка времени, равного длительности одного поколения (= времени генерации) Т, популяция растет экспоненциально. Тогда численность популяции к концу временного интервала Т будет равной N T = N 0 e rT .. Из последнего уравнения следует, что N T /N 0 = e rT . Но ведь N T /N 0 есть не что иное, как отношение численности особей в двух следующих друг за другом поколениях, или, другими словами, величина R 0 - Переписав это уравнение в несколько иной форме: R 0 = e rT , мы можем определить из него и величину r по формуле r = lnR 0 /T .

Приведенный способ оценки показателя r точен настолько, насколько точно определена длительность поколения T . В некоторых случаях вопрос о том, что такое длительность поколения, решается достаточно просто. Так, для некоторых лососевых рыб, например горбуши (Oncorhynchus gorbuscha) или нерки (Опсоrhynchus nerka ), мечущих икру один раз в конце жизни и после того погибающих, длительность поколения - это, очевидно, время от откладки икры (или выклева из икры личинок) до размножения выросших из этих икринок (личинок) особей. Подобным образом раз в конце жизни происходит размножение у многих насекомых (достаточно вспомнить поденок) и ряда видов растений. Однако у многих животных и растений период размножения растянут во времени, причем в пределах того возраста, когда размножение возможно, среднее число потомков на родительскую особь меняется. В этом случае величину длительности поколения приближенно можно рассчитать следующим образом:

Смысл подобного способа расчета легко уяснить, обратившись к механической модели (Dublin, Lotka, 1925), иллюстрирующей реальный пример из человеческой популяции. Представим себе шкалу возраста матери (рис. 25) в виде горизонтальной планки, установленной как балансир на одной опоре в центре (по типу качелей из доски, положенной на бревно). Начало отсчета (момент рождения матери) соответствует точке опоры, от которой идут симметричные шкалы влево и вправо по плечам балансира. На правое плечо нанесена гистограмма, показывающая число дочерей, родившихся у матерей данного возраста. Исходная выборка (а это реальные данные по демографии США в 1920 г.) составляет 100000 матерей, а число их дочерей-116760. Чтобы уравновесить число дочерей (точнее, массу гистограммы) по левому плечу передвигается груз, равный массе гистограммы на правом плече. В приведенном примере равновесие было достигнуто, когда груз установлен на отметку 28,5 лет. Именно на этот возраст матери приходилось среднее для всей популяции рождение «среднего» ребенка (точнее, девочки) в США в 1920 г.

Поскольку скорость роста популяции находится в обратной зависимости от длительности поколения r = lnR 0 /T , очевидно, чем раньше происходит размножение организмов, тем больше скорость роста популяции. Поясним это на воображаемом примере двух человеческих популяций, растущих по экспоненциальному закону. Предположим, что в первой популяции у каждой женщины в среднем по 5 детей, причем первый ребенок появлялся у них в 18 лет, а затем каждый год рождалось по одному ребенку (последний в 22 года). Предположим, что во второй популяции у каждой женщины в среднем по 10 детей, но появлялись на свет они позже, когда матери было от 30 до 39 лет (как и в предыдущем случае, в год по ребенку). Сначала может показаться, что вторая популяция растет в два раза быстрее первой. Но не будем торопиться с выводами и подсчитаем специфическую скорость роста r. Предположим, что девочки составляют половину всех родившихся детей. Тогда число девочек, приходящихся на одну мать, будет в первом случае 2,5, а во втором - 5. Напомним, что отношение численности дочернего поколения к численности материнского поколения есть не что иное, как R 0 - чистая скорость. воспроизводства. Тогда для первой популяции R 0 = 2,5, а для второй R 0 = 5. Длительность поколения Т в первой популяции будет составлять 20 лет, а во второй - 34,5 года. Соответственно значение г для первой популяции будет r 1 = ln2.5/20 = 046 , а для второй r 2 = ln5/34.5 = 0,047.

Полученные величины практически одинаковы. Иными словами, женщины, родившие в возрасте от 18 до 22 лет 5 детей, вносят примерно такой же вклад в увеличение численности популяции, как и женщины, родившие в возрасте от 30 до 39 лет по 10 детей. Конечно, эти рассуждения справедливы только в том случае, если в обеих популяциях сохранится то же распределение рождаемости по возрастам, т. е. девочки, рожденные более молодыми матерями, сами начнут рожать с 18 лет, а те, что родились от матерей 30-39 лет, - только с 30 лет.

Из приведенного выше примера ясно, сколь важное значение g демографической политике любого государства имеют законы, ограничивающие минимальный допустимый возраст вступления в брак, а также другие мероприятия, поощряющие деторождение только в определенном возрасте.

У многих животных возраст достижения половозрелости и. возраст начала размножения могут сильно меняться в зависимости от конкретных условий существования. В менее благоприятных условиях размножение наступает позже, и, таким образом, скорость роста популяций снижается. Так, например, у полевки-экономки (Microtus oeconomus), численность которой регулярно колеблется, половозрелость может наступать на 20-25-й день в период нарастания численности или только на 9-11-й месяц в гиды пиковой численности и в период депрессии. У планктонного ветвистоусого рачка Diaphanosoma brachyurum, обычного в летнее время вида в планктоне озер умеренной зоны, при обилии пищи откладка самками партеногенетических яиц наблюдается на 5-6-й день после рождения, тогда как при нехватке пищи Размножение начинается только через 20-30 дней(при этом добивает до данного возраста только небольшая часть популяции).

Важнейшая особенность популяции, растущей по экспоненциальному закону, - это стабильная возрастная структура, т. е. постоянное соотношение численностей разных возрастных групп. Справедливо и обратное утверждение: если в популяции поддерживается постоянное соотношение разных возрастных групп (а это соотношение в свою очередь есть следствие не меняющихся во времени распределений l х и т х), то такая популяция растет экспоненциально. Конечно, в популяциях, растущих экспоненциально, но с разной скоростью, возрастная структура различна: чем быстрее растет численность популяции, тем больше доля молодых особей (рис. 26). Как частный случай экспоненциального роста можно рассматривать стационарную популяцию, не меняющую свою численность во времени (т. е. r = 0). В такой популяции также устанавливается стабильная возрастная структура.

Если наблюдать за возрастной структурой популяции какого-нибудь вида, продолжительность жизни которого по крайней мере несколько лет, можно заметить, как когорта молодых особей, появившихся на свет в благоприятный для размножения и (или) для выживания ранних стадий развития год, будучи многочисленнее других когорт, переходит из одной возрастной группы в другую. Такие «урожайные» поколения хорошо прослеживаются, например, в популяциях рыб.

Рис. 27. Возрастная структура населения Франции по данным на 1 января 1967 г. (слева - мужчины, справа - женщины). Пониженная численность мужского населения рождения 83-90-х гг. прошлого века - это результат массовой гибели во время первой мировой войны; «талия», приходящаяся на 1916 г. рождения, - это результат резкого снижения рождаемости в годы первой мировой войны; вторая «талия», приходящаяся на 40-е гг. рождения, - это результат снижения рождаемости в годы второй мировой войны; увеличение численности людей рождения 19-!6-1949 гг. - результат подъема рождаемости после массовой демобилизации. Непосредственные потери людей в годы второй мировой войны отражены прежде всего сокращением численности мужчин 1906-1926 гг. рождения (по Shrvock еt al., 1976; из Begon et al., 1986)


В возрастной структуре населения европейских стран мощный след оставили две мировые войны. Например, на гистограмме возрастного распределения населения Франции в 1967 г. (рис. 27) хорошо видны две «талии»: верхняя-это результат снижения рождаемости в годы первой мировой войны, а нижняя-результат снижения рождаемости в годы второй мировой войны. Каждый раз после окончания войны наблюдался подъем рождаемости.

Если при незначительной эмиграции и иммиграции рождаемость превышает смертность, то популяция будет расти. Рост популяции является непрерывным процессом, если в ней существуют все возрастные группы. Скорость роста популяции при отсутствии каких-либо экологических ограничений описывает дифференциальное уравнение:

dN/dф = rN, (1)

где N -- численность особей в популяции; ф -- время; r -- константа скорости естественного прироста.

J-образная модель роста популяции. Если r > 0, то со временем численность популяции становится больше. Рост происходит сначала медленно, а затем стремительно увеличивается по экспоненциальному закону, т. е. кривая роста популяции принимает J-образный вид (рис. 2, а). Такая модель основывается на допущении, что рост популяции не зависит от ее плотности. Считают, что почти любой вид теоретически способен увеличить свою численность до заселения всей Земли при достатке пищи, воды, пространства, постоянстве условий среды и отсутствии хищников. Эта идея была выдвинута еще на рубеже XVIII и XIX вв. английским экономистом Томасом Р. Мальтусом, основоположником теории мальтузианства.

Рис. 2. Типы кривых роста численности популяции (модели роста популяции): а - J-образная; б - S-образная; К- поддерживающая емкость среды.

S-образная модель роста популяции. Иное развитие получает ситуация при ограниченности пищевых ресурсов либо при скоплении токсичных продуктов (отходов) метаболизма. Первоначальный экспоненциальный рост в исходных благоприятных условиях со временем продолжаться не может и постепенно замедляется. Плотность популяции регулирует истощение пищевых ресурсов, накопление токсикантов и поэтому влияет на рост численности. С увеличением плотности скорость роста популяции постепенно снижается до нуля, и кривая выходит на некоторый стабильный уровень (график образует плато). Кривая такого роста (рис. 2, б) имеет S-образную форму, и поэтому соответствующая модель развития событий называется S-образной. Она характерна, например, для дрожжей, фактором, ограничивающим их рост, является накопление спирта, а также для водорослей, самозатеняющих друг друга. В обоих случаях численность популяции не достигает уровня, на котором начинает сказываться нехватка элементов питания (биогенов).

На рост численности, в которой значительную (возможно, даже главную) роль играет пространство, также влияет перенаселенность. Лабораторные опыты с крысами показали, что по достижении определенной плотности популяции плодовитость животных резко снижается даже при избытке пищи. Возникают гормональные сдвиги, влияющие на половое поведение; чаще встречается бесплодие, поедание детенышей родителями и т. п. Резко ослабевает родительская забота о потомстве, детеныши раньше покидают гнездо, в результате чего снижается вероятность их выживания. Усиливается агрессивность животных. Подобные явления встречаются также в популяциях ряда млекопитающих, причем не только в лабораторных, но и природных условиях.

Скорость роста численности в S-образной модели определяет дифференциальное уравнение:

dN/dф = rN(l - N/K), (2)

где К -- поддерживающая емкость среды, т. е. максимальный размер популяции, которая может существовать в данных условиях, удовлетворяя свои потребности неопределенно долго.

Если N > К, скорость роста отрицательна. Если N < К, скорость роста положительна и величина популяции N стремится к К, т. е. приводится в соответствие с поддерживающей емкостью среды. Если N = К, скорость роста популяции равна нулю. При нулевом росте популяция стабильна, т. е. ее размеры не меняются, хотя отдельные организмы по-прежнему растут, размножаются и отмирают. Происходящее размножение уравновешивается смертностью.

В специализированной литературе J- и S-образные модели роста численности часто называют соответственно экспоненциальной и логистической.

Поддерживающая емкость играет решающую роль не только при росте популяции по S-образной, но также и по J-образной модели, ибо в некоторый момент времени все же наступает исчерпание какого-либо ресурса среды, т. е. он (или даже несколько одновременно) становится лимитирующим. После бума с внезапным выходом J-образной кривой за пределы уровня К происходит крах популяции, т. е. катастрофа, приводящая к резкому снижению численности. Причиной краха часто бывает внезапное резкое изменение условий окружающей среды (экологических факторов), понижающее поддерживающую емкость среды. Тогда огромное число особей, не способных эмигрировать, погибает.

При наиболее благоприятном для популяции стечении обстоятельств новый уровень численности соответствует поддерживающей емкости среды или, иначе говоря, кривая роста превращается из J-образной в S-образную. Однако исчерпание пищевых ресурсов может привести также к появлению и других трудностей для популяции, например к развитию болезней. Тогда численность снижается до уровня значительно более низкого, чем поддерживающая емкость среды, а в пределе популяция может даже быть обречена на вымирание.

Для S-образной модели в случаях отставания действия регулирующих механизмов по каким-либо причинам, например, в связи с затратами времени на воспроизводство или по иным причинам временное запаздывание учитывает дифференциальное уравнение:

N/dф = rNK - rN2(ф - Т)/К, (3)

где Т -- время, необходимое системе для реакции на внешнее воздействие.

Вычитаемое в правой части уравнения, содержащее N2, позволяет предсказать момент выхода системы из состояния равновесия в случаях, когда время запаздывания относительно велико по сравнению с временем релаксации (1/r) системы. В итоге при увеличении в системе времени запаздывания вместо асимптотического приближения к состоянию равновесия происходит колебание численности организмов относительно теоретической S-образной кривой. В случаях, когда пищевые ресурсы ограничены, популяция не достигает устойчивого равновесия, ибо численность одного поколения зависит от численности другого, что отражается на скорости репродукции и приводит к хищничеству и каннибализму. Колебания численности популяции, для которой характерны большие значения г, малое время воспроизводства х и несложный регулирующий механизм, могут быть весьма значительными.

Описанные модели роста популяции и дифференциальные уравнения предполагают, что все организмы сходны между собой, имеют равную вероятность погибнуть и равную способ способность к размножению, так что скорость роста популяции в экспоненциальной фазе зависит только от ее численности и не ограничена условиями среды, которые остаются постоянными. Они точно описывают процессы роста и взаимодействия особей в большенстве искусственных и некоторых естественных популяциях. «Идеальность» всех экологических факторов в исходных условиях предопределила то, что рассматриваемые модели называют идеальными.

Для природных популяций принятые допущения чаще всего неверны. В естественных условиях J- и S-образные модели роста популяции преимущественно можно наблюдать в случаях, когда тех или иных животных вселяют или они сами распространяются в новые для них районы. Тем не менее, теоретические модели роста позволяют лучше понять процессы, происходящие в естественных условиях. Большинство принципов, используемых для моделирования популяций животных, применимо также и для моделирования популяций растений.

Следует отметить, что при любой модели (как J-, так и S-образной) вначале характерна фаза экспоненциального роста численности популяции. Поэтому при сочетании благоприятных (оптимальных) значений всех факторов среды возникает «популяционный взрыв», т. е. особо быстрый рост популяции того или иного вида.

Миграция или расселение, так же как и внезапное снижение скорости размножения, могут способствовать уменьшению численности популяции. Расселение может быть связано с определенной стадией жизненного цикла, например с образованием семян.

Применительно к условиям реальной природной среды принято использовать понятия биотический потенциал -- совокупность всех экологических факторов, способствующих увеличению численности популяции, или видовая способность к размножению при отсутствии ограничений со стороны среды, а также сопротивление среды -- сочетание факторов, ограничивающих рост (лимитирующих факторов).

Любые изменения популяции есть результат нарушения равновесия между ее биотическим потенциалом и сопротивлением окружающей среды.

Динамические (временные) – характеризуют процессы, протекающие в популяции за некоторый промежуток времени: рождаемость, смертность, скорость роста.

1. Рождаемость – число особей рождённых в популяции за некоторый промежуток времени (час, день, месяц, год).Характеризует скорость естественного восполнения популяции за счет размножения. Различают следующие виды рождаемости :

а) Максимальная рождаемость (физиологическая) – теоретический максимум скорости образования новых особей в идеальных условиях среды. Она связана с понятием биотический потенциал – время захвата видом всей поверхности Земли при условии 100% выживаемости потомства.

Пример: для бактерий – 1 сутки, для водорослей – 16 суток, для мухи – 366 суток, для слона – 376000 суток.

В реальных условиях максимальная рождаемость невозможна, так как лишь небольшая доля особей доживает до репродуктивного возраста.

б) Экологическая (реализованная) рождаемость – увеличение численности популяции при фактических специфических условиях среды.

Она бывает 2-х типов :

- абсолютная рождаемость – число особей родившихся за определённое время в популяции.

Пример: в городе 100000 населения, родилось 8000 новорожденных, следовательно, абсолютная рождаемость = 8000 тысяч человек в год.

- удельная рождаемость – число особей родившихся за определённое время, рассчитанных на одну особь в популяции.

Пример: удельная рождаемость для этого же города – 0,08 (8%).

2. Смертность – количество особей, погибших в популяции за определенный период.

Смертность изменяется в зависимости от условий среды, возраста и состояния популяции и выражается чаще в виде относительной величины – доли особей (от исходного количества), погибших за определенное время. Смертность может быть минимальной и экологической (реализованной). Минимальная смертность представляет собой гибель особей в идеальных для популяции условиях существования (в отсутствие ограничивающих факторов). Экологическая смертность – это гибель особей в реальных условиях существования.

Существует 3 типа смертности , которым соответствуют определенные кривые выживаемости (рисунок):

Кривая I типа свойственна организмам, смертность которых на протяжении всей жизни незначительна, но возрастает в ее конце. Идеальная кривая для выживаемости популяции, в которой лишь старение служит главным фактором, влияющим на смертность (например, популяции лабораторных животных в идеальных условиях, люди в развитых странах, некоторые крупные млекопитающие) Это так называемая «кривая дрозофилы ».

Кривая II типа характерна для видов, у которых смертность остается примерно постоянной в течение всей жизни. Это могут быть растущие популяции в оптимальных условиях среды (например, популяции высокоорганизованных птиц, млекопитающих). Это «кривая гидры ».



Кривая III типа отражает массовую гибель особей в начальный период жизни, причем смертность постоянна в течение всей жизни организмов. Главный фактор, определяющий смертность, – случай («популяция стеклянных стаканов в кафетерии»). Такая кривая характерна для большинства популяций растений и животных (например, многие рыбы, беспозвоночные, растения и другие организмы, не заботящиеся о потомстве, и выживающие за счет огромного количества икринок, личинок, семян и т.п.). Это «кривая устрицы ».

Рисунок – Кривые выживаемости

Изучение смертности имеет важное значение для определения степени уязвимости популяций вредителей народного хозяйства.

3. Скорость роста популяции – это изменение численности популяции в единицу времени. Она может быть либо положительной, либо нулевой, либо отрицательной и зависит от показателей рождаемости, смертности и миграции особей. Различают абсолютную и удельную скорость роста популяции:

а) абсолютная (общая) скорость роста – выражается изменением численности популяции за промежуток времени;

б) удельная скорость роста – отношение скорости роста к исходной численности.

Скорость роста может быть выражена в виде кривой роста популяции (рисунок).

Рисунок – Кривые роста популяции

Существует две основные модели роста популяции :

- J-образная кривая отражает неограниченный экспоненциальный рост численности популяции, не зависящий от плотности популяции. Подобный рост популяций иногда наблюдается в природе: «цветение» воды в результате бурного развития фитопланктона, вспышка массового размножения некоторых вредителей, рост бактерий в свежей культуре. Однако это происходит непродолжительное время, так как после превышения емкости среды неизбежно произойдет резкое снижение численности.

- S-образная (сигмоидная, логистическая) кривая отражает логистический тип роста в реальных экологических условиях, зависящего от плотности популяции, при котором скорость роста популяции снижается по мере роста численности (плотности). Сначала рост популяции невелик, но затем он нарастает, но через некоторое время замедляется и выходит на плато (рисунок).

4 Экологические стратегии популяций

Экологические стратегии популяций – это общая характеристика роста и размножения в пределах данной популяции. В 1938 году русский ботаник Леонтий Григорьевич Раменский выделил три основных типа стратегий выживания среди растений:

- виоленты – подавляют всех конкурентов. К ним относятся деревья, тростники, сфагновые мхи, доминирующие на заболоченных территориях;

- патиенты – виды, способные выжить в неблагоприятных условиях («тенелюбивые», «сухолюбивые», «солелюбивые» и т.п.);

- эксплеренты – виды, способные быстро появляться там, где нарушены коренные сообщества, – на вырубках и гарях (кипрей, осины, березы), на отмелях и т.д.

На основании скорости роста популяций, рождаемости, смертности и прочих характеристик выделяют несколько экологических стратегий популяций :

а) r-стратеги (r-виды, r-популяции) – популяции из быстро размножающихся, но менее конкурентоспособных особей. Имеют J-образную (экспоненциальную) кривую роста численности. Такие популяции быстро расселяются, но они малоустойчивы и быстро погибают. К ним относятся бактерии, тли, однолетние растения и др.

б) к-стратеги (к-виды, к-популяции) – популяции из медленно размножающихся, но более конкурентоспособных особей. Имеют S-образную кривую роста численности. Такие популяции населяют стабильные местообитания. К ним относятся птицы, млекопитающие, деревья и др.