Электрический ток в жидкостях. Движение зарядов, анионы катионы. Электрический ток в жидкостях — теория, электролиз Что представляет ток в жидкостях

Доклад на тему:

Электрический ток

в жидкостях

(электролитах)

Электролиз

Законы Фарадея

Элементарный электрический заряд

Ученицы 8 го класса « Б »

Л огиновой М арии А ндреевны

Москва 2003

Школа № 91

Введение

С электропроводностью растворов солей в воде (электролитов) связано очень многое в нашей жизни. С первого удара сердца («живое» электричество в теле человека, на 80% состоящем из воды) до автомобилей на улице, плееров и мобильных телефонов (неотъемлимой частью этих устройств являются «батарейки» – электрохимические элменты питания и различные аккумуляторы – от свинцово-кислотных в автомобилях до литий-полимерных в самых дорогих мобильных телефонах). В огромных, дымящихся ядовитыми парами чанах из расплавленного при огромной температуре боксита электролизом получают алюминий – «крылатый» металл для самолётов и банок для «Фанты». Все вокруг – от хромированной решетки радиатора иномарки до посеребрённой серёжки в ухе когда-либо сталкивалось с раствором или расплавом солей, а следовательно и с электротоком в жидкостях. Не зря это явление изучает целая наука – электрохимия. Но нас сейчас больше интересуют физические основы этого явления.

Электроток в растворе. Электролиты

Из уроков физики в 8 классе нам известно, что заряд в проводниках (металлах) переносят отрицательно заряженные электроны.

Упорядоченное движение заряженных частиц называется электрическим током.

Но если мы соберем прибор (с электродами из графита):

то убедимся, что стрелка амперметра отклоняется – через раствор идет ток! Какие же заряженные частицы есть в растворе?

Ещё в 1877 году шведский ученый Сванте Аррениус, изучая электропроводность растворов различных веществ, пришел к выводу, что её причиной являются ионы, которые образуются при растворении соли в воде. При растворении в воде молекула CuSO 4 распадается (диссоциирует) на два разнозаряженных иона – Cu 2+ и SO 4 2- . Упрощенно происходящие процессы можно отразить следующей формулой:

CuSO 4 ÞCu 2+ +SO 4 2-

Проводят электрический ток растворы солей, щелочей, кислот.

Вещества, растворы которых проводят электрический ток, называются электролитами.

Растворы сахара, спирта, глюкозы и некоторых других веществ не проводят электрический ток.

Вещества, растворы которых не проводят электрический ток, называются неэлектролитами.

Электролитическая диссоциация

Процесс распада электролита на ионы называется электролитической диссоциацией.

С. Аррениус, который придерживался физической теории растворов, не учитывал взаимодействия электролита с водой и считал, что в растворах находятся свободные ионы. В отличие от него русские химики И. А. Каблуков и В. А. Кистяковский применили к объяснению электролитической диссоциации химическую теорию Д. И. Менделеева и доказали, что при растворении электролита происходит химическое взаимодействие растворённого вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы. Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, то есть «одетые в шубку» из молекул воды. Следовательно, диссоциация молекул электролитов происходит в следующей последовательности:

а) ориентация молекул воды вокруг полюсов молекулы электролита

б) гидратация молекулы электролита

в) её ионизация

г) распад её на гидратированные ионы

По отношению к степени электролитической диссоциации электролиты делятся на сильные и слабые.

- Сильные электролиты – такие, которые при растворении практически полностью диссоциируют.

У них значение степени диссоциации стремится к единице.

- Слабые электролиты – такие, которые при растворении почти не диссоциируют. Их степень диссоциации стремится к нулю.

Из этого делаем вывод, что переносчиками электрического заряда (носителями электрического тока) в растворах электролитов являются не электроны, а положительно и отрицательно заряженные гидратированные ионы .

Температурная зависимость сопротивления электролита

При повышении температуры облегчается процесс диссоциации, повышается подвижность ионов и сопротивление электролита падает .

Катод и анод. Катионы и анионы

А что же происходит с ионами под воздействием электрического тока?

Вернёмся к нашему прибору:

В растворе CuSO 4 диссоциировал на ионы – Cu 2+ и SO 4 2- . Положительно заряженный ион Cu 2+ (катион) притягивается к отрицательно заряженному электроду – катоду , где получает недостающие электроны и восстанавливается до металлической меди – простого вещества. Если извлечь катод из прибора после прохождения через раствор тока, то нетрудно заметить красно-рыжий налет – это металлическая медь.

Первый закон Фарадея

А можем ли мы узнать сколько меди выделилось? Взвешивая катод до и после опыта, можно точно определить массу осадившегося металла. Измерения показывают, что масса вещества, выделевшегося на электродах, зависит от силы тока и времени электролиза:

где K – коэффиент пропорциональности, называемый также электрохимическим эквивалентом .

Следовательно, масса выделевшегося вещества прямо пропорциональна силе тока и времени электролиза. Но ток за время (согласно формуле):

есть заряд.

Итак, масса вещества, выделевшегося на электроде, пропорциональна заряду, или количеству электричества, прошедшему через электролит.

M=K´q

Этот закон был эксперементально открыт в 1843 году английским ученым Майклом Фарадеем и называется первый закон Фарадея .

Второй закон Фарадея

А что такое и от чего зависит электрохимический эквивалент? На этот вопрос тоже дал ответ Майкл Фарадей.

На основании многочисленных опытов он пришёл к выводу, что эта величина является характерной для каждого вещества. Так, например при электролизе раствора ляписа (азотнокислого серебра AgNO 3) 1 кулон выделяет 1,1180 мг серебра; точно такое же количество серебра выделяется при электролизе зарядом в 1 кулон любой серебряной соли. При электролизе соли другого металла 1 кулон выделяет другое количество данного металла. Таким образом, электрохимическим эквивалентом какого-либо вещества называется масса этого вещества, выделяемая при электролизе 1кулоном протекшего через раствор электричества . Приведем его значения для некоторых веществ:

Вещество

K в мг/к

Ag (серебро)

H (водород)

Из таблицы мы видим, что электрохимические эквиваленты различных веществ существенно отличны один от другого. От каких же свойств вещества зависит величина его электрохимического эквивалента? Ответ на этот вопрос даёт второй закон Фарадея :

Электрохимические эквиваленты различных веществ пропорциональны их атомным весам и обратно пропорциональны числам, выражающим их химическую валентность.

n – валентность

A – атомный вес

– называют химическим эквивалентом данного вещества

– коэффициент пропорциональности, который является уже универсальной постоянной, то есть имеет одинаковое значение для всех веществ. Если измерить электрохимический эквивалент в г/к то найдем, что он равен 1,037´10 -5 г/к.

Обьединяя первый и второй законы Фарадея получаем:

Эта формула имеет простой физический смысл: F численно равно заряду, котоый надо пропустить через любой электролит, чтобы выделить на электродах вещество в количестве, равном одному химическому эквиваленту. F называют числом Фарадея и оно равно 96400 к/г.

Моль и количество молекул в нем. Число Авогадро

Из курса химии за 8й класс мы знаем, что для измерения количеств веществ, участвующих в химических реакциях, была выбрана особая еденица – моль. Чтобы отмерять один моль вещества, нужно взять столько граммов его, какова относительная молекулярная масса его.

Например, 1моль воды (H 2 O) равен 18 граммам (1+1+16=18), моль кислорода (O 2) – 32 грамма, а моль железа (Fe) – 56 грамм.Но что особенно для нас важно, установлено, что 1 моль любого вещества всегда содержит одинаковое число молекул .

Моль – это такое количество вещества, в котором содержится 6 ´ 10 23 молекул этого вещества.

В честь итальянского ученого А. Авогадро это число (N ) называется постоянной Авогадро или числом Авогадро .

Из формулы следует, что если q=F , то . Это значит что при прхождении через электролит заряда равного 96400 кулонам, выделится граммов любого вещества. Иначе говоря, для выделения одного моля одновалентного вещества через электролит должен протечь заряд q=F кулонов. Но мы знаем, что в любом моле вещества содержится одно и то же число его молекул – N=6x10 23 . Это позволяет нам вычислить заряд одного иона одновалентного вещества – элементарный электрический заряд – заряд одного (!) электрона:

Применение электролиза

Электролитический метод получения чистых металлов (рафинирование, аффинаж). Электролиз, сопровождающийся растворением анода

Хорошим примером является электролитическое очищение (рафинирование) меди. Полученная непосредственно из руды медь отливается в виде пластин и помещается в качестве анода в раствор CuSO 4 . Подбирая напряжение на электродах ванны (0,20-0,25в), можно добиться, чтобы на катоде выделялась только металлическая медь. При этом посторонние примеси либо переходят в раствор (без выделения на катоде), либо выпадают на дно ванны в виде осадка («анодный шлам»). Катионы вещества анода соединяются с анионом SO 4 2- , а на катоде при этом напряжении выделяется только металлическая медь. Анод как бы «растворяется». Такая очистка позволяет добится чистоты 99,99% («четыре девятки»). Аналогично (аффинаж) очищают и драгоценные металлы (золото Au, серебро Ag).

В настоящее время весь алюминий (Al) добывается электролитически (из расплава бокситов).

Гальванотехника

Гальванотехника – область прикладной электрохимии, занимающаяся процессами нанесения металлических покрытий на поверхность как металлических, так и неметаллических изделий при прохождении постоянного электрического тока через растворы их солей. Гальванотехника пожразделяется на гальваностегию и гальванопластику .

Посредством электролиза можно покрыть металлические предметы слоем другого металла. Этот процесс называется гальваностегией . Особое техническое значение имеют покрытия трудноокисляемыми металлами, в частности никелирование и хромирование, а также серебрение и золочение, часто применяемые для защиты металлов от коррозии. Для получения нужных покрытий предмет тщательно очищяют, хорошо обезжиривают и помещают как катод в электролитическую ванну, содержащую соль того металла, которым желают покрыть предмет. Для более равномерного покрытия полезно применять две пластины в качестве анода, помещая предмет между ними.

Также посредством электролиза можно не только покрыть предметы слоем того или иного металла, но и изготовить их рельефные металлические копии (например, монет, медалей). Этот процесс был изобретен русским физиком и электротехником, членом Российской Академии наук Борисом Семеновичем Якоби (1801-1874) в сороковых годах XIX века и называется гальванопластикой . Для изготовления рельефной копии предмета сначала делают слепок из какого-либо пластичного материала, например из воска. Этот слепок натирают графитом и погружают в электролитическую ванну в качестве катода, где на нём и осаждается слой металла. Это применяется в полиграфии при изготовлении печатных форм.

Кроме указанных выше, электролиз нашел применение и в других областях:

Получение оксидных защитных пленок на металлах (анодирование);

Электрохимическая обработка поверхности металлического изделия (полировка);

Электрохимическое окрашивание металлов (например, меди, латуни, цинка, хрома и др.);

Очистка воды – удаление из нее растворимых примесей. В результате получается так называемая мягкая вода (по своим свойствам приближающаяся к дистиллированной);

Электрохимическая заточка режущих инструментов (например, хирургических ножей, бритв и т.д.).

Список использованной литературы:

1. Гуревич А. Е. «Физика. Электромагнитные явления. 8 класс» Москва, Издательский дом «Дрофа». 1999 год.

2. Габриэлян О. С. «Химия. 8 класс» Москва, Издательский дом «Дрофа». 1997 год.

3. «Элементарный учебник физики под редакцией академика Г. С. Ландсберга - Том II – электричество и магнетизм». Москва, «Наука» 1972 год.

4. Eric M. Rogers. «Physics for the Inquiring Mind (the methods, nature and phylosophy of physical science)». «Prinseton University press» 1966. Том III – электричество и магнетизм. Перевод Москва, «Мир» 1971 год.

5. А. Н. Ремизов «Курс физики, электроники и кибернетики для медицинских институтов». Москва, «Высшая школа» 1982 год.

Жидкости, как и твердые тела, могут быть проводниками, полупроводниками и диэлектриками. В этом уроке речь пойдет о жидкостях-проводниках. Причем не о жидкостях с электронной проводимостью (расплавленные металлы), а о жидкостях-проводниках второго рода (растворы и расплавы солей, кислот, оснований). Тип проводимости таких проводников - ионный.

Определение . Проводники второго рода - такие проводники, в которых при протекании тока происходят химические процессы.

Для лучшего понимания процесса проводимости тока в жидкостях, можно представить следующий опыт: В ванну с водой поместили два электрода, подключенные к источнику тока, в цепи в качестве индикатора тока можно взять лампочку. Если замкнуть такую цепь, лампа гореть не будет, что означает отсутствие тока, а это значит, что в цепи есть разрыв, и вода сама по себе ток не проводит. Но если в ванную поместить некоторое количество - поваренной соли - и повторить замыкание, то лампочка загорится. Это значит, что в ванной между катодом и анодом начали двигаться свободные носители заряда, в данном случае ионы (рис. 1).

Рис. 1. Схема опыта

Проводимость электролитов

Откуда во втором случае берутся свободные заряды? Как было сказано в одном из предыдущих уроков, некоторые диэлектрики - полярные. Вода имеет как раз-таки полярные молекулы (рис. 2).

Рис. 2. Полярность молекулы воды

При внесении в воду соли молекулы воды ориентируются таким образом, что их отрицательные полюса находятся возле натрия, положительные - возле хлора. В результате взаимодействий между зарядами молекулы воды разрывают молекулы соли на пары разноименных ионов. Ион натрия имеет положительный заряд, ион хлора - отрицательный (рис. 3). Именно эти ионы и будут двигаться между электродами под действием электрического поля.

Рис. 3. Схема образования свободных ионов

При подходе ионов натрия к катоду он получает свои недостающие электроны, ионы хлора при достижении анода отдают свои.

Электролиз

Так как протекание тока в жидкостях связано с переносом вещества, при таком токе имеет место процесс электролиза.

Определение. Электролиз - процесс, связанный с окислительно-восстановительными реакциями, при которых на электродах выделяется вещество.

Вещества, которые в результате подобных расщеплений обеспечивают ионную проводимость, называются электролитами. Такое название предложил английский физик Майкл Фарадей (рис. 4).

Электролиз позволяет получать из растворов вещества в достаточно чистом виде, поэтому его применяют для получения редких материалов, как натрий, кальций… в чистом виде. Этим занимается так называемая электролитическая металлургия.

Законы Фарадея

В первой работе по электролизу 1833 года Фарадей представил свои два закона электролиза. В первом речь шла о массе вещества, выделяющегося на электродах:

Первый закон Фарадея гласит, что эта масса пропорциональна заряду, прошедшему через электролит:

Здесь роль коэффициента пропорциональности играет величина - электрохимический эквивалент. Это табличная величина, которая уникальна для каждого электролита и является его главной характеристикой. Размерность электрохимического эквивалента:

Физический смысл электрохимического эквивалента - масса, выделившаяся на электроде при прохождении через электролит количества электричества в 1 Кл.

Если вспомнить формулы из темы о постоянном токе:

То можно представить первый закон Фарадея в виде:

Второй закон Фарадея непосредственно касается измерения электрохимического эквивалента через другие константы для конкретно взятого электролита:

Здесь: - молярная масса электролита; - элементарный заряд; - валентность электролита; - число Авогадро.

Величина называется химическим эквивалентом электролита. То есть, для того чтобы знать электрохимический эквивалент, достаточно знать химический эквивалент, остальные составляющие формулы являются мировыми константами.

Исходя из второго закона Фарадея, первый закон можно представить в виде:

Фарадей предложил терминологию этих ионов по признаку того электрода, к которому они движутся. Положительные ионы называются катионами, потому что они движутся к отрицательно заряженному катоду, отрицательные заряды называются анионами как движущиеся к аноду.

Вышеописанное действие воды по разрыву молекулы на два иона называется электролитической диссоциацией.

Помимо растворов, проводниками второго рода могут быть и расплавы. В этом случае наличие свободных ионов достигается тем, что при высокой температуре начинаются очень активные молекулярные движения и колебания, в результате которых и происходит разрушение молекул на ионы.

Практическое применение электролиза

Первое практическое применение электролиза произошло в 1838 году русским ученым Якоби. С помощью электролиза он получил оттиск фигур для Исаакиевского собора. Такое применение электролиза получило название гальванопластика. Другой сферой применения является гальваностегия - покрытие одного металла другим (хромирование, никелирование, золочение и т.д., рис. 5)

  • Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  • Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. - М.: 2010.
    1. Fatyf.narod.ru ().
    2. ХиМиК ().
    3. Ens.tpu.ru ().

    Домашнее задание

    1. Что такое электролиты?
    2. Какие существуют два принципиально разных типа жидкостей, в которых может протекать электрический ток?
    3. Какие могут быть механизмы образования свободных носителей зарядов?
    4. *Почему масса, выделившаяся на электроде, пропорциональна заряду?

    Электрический ток в газах

    Носители заряда: электроны, положительные ионы, отрицательные ионы.

    Носители заряда возникают в газе в результате ионизации: вследствие облучения газа, либо столкновений частиц нагретого газа друг с другом.

    Ионизация электронным ударом.

    A_{поля}=eEl

    e=1,6\cdot 10^{19}Кл ;

    E - направление поля;

    l - длина свободного пробега между двумя последовательными столкновениями электрона с атомами газа.

    A_{поля}=eEl\geq W - условие ионизации

    W - энергия ионизации, т.е. энергия, необходимая для того, чтобы вырвать из атома электрон

    Число электронов увеличивается в геометрической прогрессии, в результате возникает электронная лавина, а следовательно разряд в газе.

    Электрический ток в жидкости

    Жидкости так же, как и твердые тела могут быть диэлектриками, проводниками и полупроводниками. К числу диэлектриков относится дистиллированная вода, к проводникам - растворы электролитов: кислот, щелочей, солей и расплавы металлов. Жидкими полупроводниками являются расплавленный селен, расплавы сульфидов.

    Электролитическая диссоциация

    При растворении электролитов под влиянием электрического поля полярных молекул воды происходит распад молекул электролитов на ионы. Например, CuSO_{4}\rightarrow Cu^{2+}+SO^{2-}_{4} .

    Наряду с диссоциацией идет обратный процесс - рекомбинация , т.е. объединение ионов противоположных знаков в нейтральные молекулы.

    Носителями электричества в растворах электролитов являются ионы. Такая проводимость называется ионной .

    Электролиз

    Если в ванну с раствором электролита поместить электроды и пустить ток, то отрицательные ионы будут двигаться к положительному электроду, а положительные - к отрицательному.

    На аноде (положительном электроде) отрицательно заряженные ионы отдают лишние электроны (окислительная реакция), а на катоде (отрицательном электроде) положительные ионы получают недостающие электроны (восстановительная реакция).

    Определение. Процесс выделения на электродах веществ, связанный с окислительно-восстановительными реакциями называется электролизом.

    Законы Фарадея

    I. Масса вещества, которая выделяется на электроде, прямо пропорциональна заряду, протекшему через электролит:

    m=kq

    k - электрохимический эквивалент вещества.

    q=I\Delta t , тогда

    m=kI\Delta t

    k=\frac{1}{F}\frac{\mu}{n}

    \frac{\mu}{n} - химический эквивалент вещества;

    \mu - молярная масса;

    n - валентность

    Электрохимические эквиваленты веществ пропорциональны химическим.

    F - постоянная Фарадея;

    Всем знакомо определение электрического тока. Оно представляется как направленное движение заряженных частиц. Подобное движение в различных средах имеет принципиальные отличия. Как основной пример этого явления можно представить течение и распространение электрического тока в жидкостях . Такие явления характеризуются различными свойствами и серьезно отличаются от упорядоченного движения заряженных частиц, которое происходит в обычных условиях не под воздействием различных жидкостей.

    Рисунок 1. Электрический ток в жидкостях. Автор24 - интернет-биржа студенческих работ

    Формирование электрического тока в жидкостях

    Несмотря на то, что процесс проводимости электрического тока осуществляется посредством металлических приборов (проводников), ток в жидкостях лежит в зависимости от движения заряженных ионов, которые приобрели или потеряли по некой определенной причине подобные атомы и молекулы. Показателем такого движения выступает изменение свойств определенного вещества, где проходят ионы. Таким образом, нужно опираться на основное определение электрического тока, чтобы сформировать специфическое понятие формирования тока в различных жидкостях. Определено, что разложение отрицательно заряженных ионов способствует движению в область источника тока с положительными значениями. Положительно заряженные ионы в таких процессах будут двигаться в противоположном направлении – к отрицательному источнику тока.

    Жидкие проводники делятся на три основных типа:

    • полупроводники;
    • диэлектрики;
    • проводники.

    Определение 1

    Электролитическая диссоциация - процесс разложения молекул определенного раствора на отрицательные и положительные заряженные ионы.

    Можно установить, что электроток в жидкостях может возникать после изменения состава и химического свойства используемых жидкостей. Это напрочь противоречит теории распространения электрического тока иными способами при использовании обычного металлического проводника.

    Опыты Фарадея и электролиз

    Течение электрического тока в жидкостях – это продукт процесса перемещения заряженных ионов. Проблемы, связанные с возникновение и распространением электротока в жидкостях, стали причиной изучения знаменитого ученого Майкла Фарадея. Он при помощи многочисленных практических исследований смог найти доказательства, что масса вещества, выделяемая в процессе электролиза, зависит от количества времени и электричества. При этом имеет значение время, в течение которого проводились эксперименты.

    Также ученый смог выяснить, что в процессе электролиза при выделении определенного количества вещества необходимо одинаковое количество электрических зарядов. Это количество удалось точно установить и зафиксировать в постоянной величине, которая получила название числа Фарадея.

    В жидкостях электрический ток имеет иные условия распространения. Он взаимодействует с молекулами воды. Они в значительной степени затрудняют все передвижения ионов, что не наблюдалось в опытах с использование обычного металлического проводника. Из этого следует, что образование тока при электролитических реакциях будет не столь большим. Однако при увеличении температуры раствора проводимость постепенно увеличивается. Это означает, что напряжение электрического тока растет. Также в процессе электролиза было замечено, что вероятность распада определенной молекулы на отрицательные или положительные заряды ионов увеличивается из-за большого числа молекул используемого вещества или растворителя. При насыщении раствора ионами сверх определенной нормы, происходит обратный процесс. Проводимость раствора вновь начинает снижаться.

    В настоящее время процесс электролиза нашел свое применения во многих областях и сферах науки и на производстве. Промышленные предприятия его используют при получении или обработке металла. Электрохимические реакции участвуют в:

    • электролизе солей;
    • гальванике;
    • полировке поверхностей;
    • иных окислительно-восстановительных процессах.

    Электрический ток в вакууме и жидкостях

    Распространение электрического тока в жидкостях и иных средах представляет собой довольно сложный процесс, который имеет собственные характеристики, особенности и свойства. Дело в том, что в подобных средах полностью отсутствуют заряды в телах, поэтому их принято называть диэлектриками. Главной целью исследований стало то, чтобы создать такие условия, при которых атомы и молекулы могли бы начать свое движения и процесс образования электрического тока начался. Для этого принято использовать специальные механизмы или устройства. Основным элементом таких модульных устройств стали проводники в виде металлических пластин.

    Для определения основных параметров тока необходимо воспользоваться известными теориями и формулами. Самым распространенным являются закон Ома. Он выступает в роли универсальной амперной характеристики, где осуществляется принцип зависимости тока от напряжения. Напомним, что напряжение измеряется в единице Ампер.

    Для проведения опытов с водой и солью необходимо подготовить сосуд с соленой водой. Это даст практическое и визуальное представление о процессах, которые происходят при образовании электрического тока в жидкостях. Также установка должна содержать электроды прямоугольной формы и источники питания. Для полномасштабной подготовки к опытам нужно иметь амперную установку. Она поможет провести энергию от сети питания к электродам.

    В роли проводников будут выступать металлические пластины. Их опускают в используемую жидкость, а затем подключается напряжение. Сразу начинается перемещение частиц. Оно проходит в хаотичном режиме. При возникновении магнитного поля между проводниками все процессе движения частиц упорядочиваются.

    Ионы начинают меняться зарядами и объединяться. Таким образом, катоды становятся анодами, а аноды – катодами. В этом процессе необходимо также учитывать еще несколько важных факторов:

    • уровень диссоциации;
    • температура;
    • электрическое сопротивление;
    • использование переменного или постоянного тока.

    В конце эксперимента происходит образование слоя соли на пластинах.

    Вода, как универсальный растворитель.. Водные растворы.. Электролитическая диссоциация.. Электролит.. Слабые и сильные электролиты.. Носители электрических зарядов в жидкости.. Положительные и отрицательные ионы.. Электролиз.. Расплавы.. Природа электрического тока в расплавах..

    Одним из условий возникновения электрического тока является наличие свободных зарядов, способных двигаться под действием электрического поля. О природе электрического тока в металлах мы говорили и.
    В этом уроке мы попытаемся разобраться, какие частицы переносят электрический заряд в жидкостях и расплавах.

    Вода, как универсальный растворитель

    Как мы знаем, дистиллированная вода не содержит носителей зарядов и поэтому не проводит электрический ток, т. е. является диэлектриком. Однако наличие каких-либо примесей уже делает воду достаточно хорошим проводником.
    Вода обладает феноменальной способностью растворять в себе почти все химические элементы. При растворении в воде различных веществ (кислот, щелочей, оснований, солей и др.) раствор становится проводником из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор – электролитом, способным проводить электрический ток. Все водные бассейны на Земле в большей или меньшей степени являются природными электролитами.

    Мировой океан представляет собой раствор ионов практически всех элементов таблицы Менделеева.

    Желудочный сок, кровь, лимфа, все жидкости в организме человека являются электролитами. Все животные и растения также в основном состоят из электролитов.

    По степени диссоциации есть слабые и сильные электролиты. Вода относится к слабым электролитам, а большинство неорганических кислот относится к сильным электролитам. Электролиты еще называют проводниками второго рода.

    Носители электрических зарядов в жидкости

    При растворении в воде (или в другой жидкости) различных веществ, они распадаются на ионы.
    Например, обыкновенная поваренная соль NaCl (хлорид натрия) в воде разделяется на положительные ионы натрия (Na +) и отрицательные ионы хлора (Cl -). Если два полюса в полученном электролите находятся под различными потенциалами, то отрицательные ионы дрейфуют к положительному полюсу, в то время как положительные ионы дрейфуют к отрицательному полюсу.

    Таким образом, электрический ток в жидкости состоит из потоков положительных и отрицательных ионов, направленных навстречу друг другу.

    В то время как абсолютно чистая вода является изолятором, вода, содержащая даже небольшие примеси (естественные либо привнесенные извне) ионизированного вещества, является проводником электрического тока.

    Электролиз

    Поскольку положительные и отрицательные ионы растворенного вещества под воздействием электрического поля дрейфуют в разные стороны, вещество постепенно разделяется на две части.

    Такое разделение вещества на составляющие его элементы называется электролизом.

    Электролиты используются в электрохимии, в химических источниках тока (гальванические элементы и батареи), в производственных процессах гальваники и других технологиях, основанных на движении электрических зарядов в жидкостях под действием электрического поля.

    Расплавы

    Диссоциация вещества возможна и без участия воды. Достаточно расплавить кристаллы химического состава вещества и получить расплав. Расплавы вещества так же, как водные электролиты являются проводниками второго рода, а потому их можно называть электролитами. Электрический ток в расплавах имеет ту же природу, что и ток в водных электролитах – это встречные потоки положительных и отрицательных ионов.

    Используя расплавы, в металлургии получают алюминий электролитическим способом из глинозема. Электрический ток пропускается через оксид алюминия и в процессе электролиза у одного из электродов (катода), накапливается чистый алюминий. Это очень энергоемкий процесс, который по энергопотреблению напоминает разложение воды на водород и кислород с помощью электрического тока.

    В цехе электролиза алюминия