Типовые ошибки при решении уравнений. Квадратные неравенства. Исчерпывающее руководство (2019). Как решить квадратное неравенство

На этом уроке мы продолжим решение рациональных неравенств повышенной сложности с помощью метода интервалов. В примерах будут использованы более сложные комбинированные функции и будут рассмотрены типовые ошибки, возникающие при решении подобных неравенств.

Тема: Рацион альные неравенства и их системы

Урок: Решение рациональных неравенств пов ышенной сложности

1. Тема урока, введение

Мы решали рациональные неравенства вида и для их решения использовали метод интервалов. Функция была либо линейная, либо дробно-линейная, либо многочлен.

2. Решение задач

Рассмотрим неравенства другого типа.

1. Решить неравенство

Преобразуем неравенство с помощью эквивалентных преобразований.

Теперь можно исследовать функцию

Рассмотрим функцию нет корней.

Схематически изобразим и прочитаем график функции (Рис. 1).

Функция положительна при любом .

Т. к. мы установили, что можем поделить обе части неравенства на это выражение.

Чтобы дробь была положительной, при положительном числителе должен быть положительный знаменатель.

Рассмотрим функцию .

Схематически изобразим график функции - параболу, значит ветви направлены вниз (Рис. 2).

2. Решить неравенство

Рассмотрим функцию

1. Область определения

2. Нули функции

3. Выделяем интервалы знакопостоянства.

4. Расставляем знаки (Рис. 3).

Если скобка находится в нечетной степени, при переходе через корень функция меняет знак. Если скобка находится в четной степени, функция не меняет знак.

Мы допустили типовую ошибку - не включили в ответ корень . В данном случае равенство нулю допускается, т. к. неравенство нестрогое.

Чтобы не допускать таких ошибок, необходимо помнить, что

Ответ:

Мы рассмотрели метод интервалов для сложных неравенств и возможные типовые ошибки, а также пути их устранения.

Рассмотрим еще один пример.

3. Решить неравенство

Разложим на множители каждую скобку в отдельности.

, потому можно не учитывать этот множитель.

Теперь можно применить метод интервалов.

Рассмотрим Сокращать числитель и знаменатель на мы не будем, это ошибка.

1. Область определения

2. Нули функции нам уже известны

Не является нулем функции, т. к. не входит в область определения - в этом случае знаменатель равен нулю.

3. Определяем интервалы знакопостоянства.

4. Расставляем знаки на интервалах и выбираем промежутки, удовлетворяющие нашим условиям (Рис. 4).

3. Заключение

Мы рассмотрели неравенства повышенной сложности, но метод интервалов дает нам ключ к их решению, поэтому мы будем использовать его и в дальнейшем.

1. Мордкович А. Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. - М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А. Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс: учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш. А., Колягин Ю. М., Сидоров Ю. В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

1. Мордкович А. Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. №№ 37; 45(а, в); 47(б, г); 49.

1. Портал Естественных Наук.

2. Портал Естественных Наук.

3. Электронный учебно-методический комплекс для подготовки 10-11 классов к вступительным экзаменам по информатике, математике, русскому языку.

4. Виртуальный репетитор.

5. Центр образования «Технология обучения» .

6. Раздел College. ru по математике.

Чтобы разобраться, как решать квадратные уравнения, нам потребуется разобраться, что же такое квадратичная функция, и какими свойствами она обладает.

Наверняка ты задавался вопросом, зачем вообще нужна квадратичная функция? Где применим её график (парабола)? Да стоит только оглядеться, и ты заметишь, что ежедневно в повседневной жизни сталкиваешься с ней. Замечал, как на физкультуре летит брошенный мяч? «По дуге»? Самым верным ответом будет «по параболе»! А по какой траектории движется струя в фонтане? Да, тоже по параболе! А как летит пуля или снаряд? Все верно, тоже по параболе! Таким образом, зная свойства квадратичной функции, можно будет решать многие практические задачи. К примеру, под каким углом необходимо кинуть мяч, чтобы обеспечить наибольшую дальность полёта? Или, где окажется снаряд, если запустить его под определённым углом? и т.д.

Квадратичная функция

Итак, давай разбираться.

К примеру, . Чему здесь равны, и? Ну, конечно, и!

А что, если, т.е. меньше нуля? Ну конечно, мы «грустим», а, значит, ветви будут направлены вниз! Давай посмотрим на графике.

На этом рисунке изображён график функции. Так как, т.е. меньше нуля, ветви параболы направлены вниз. Кроме того, ты, наверное, уже заметил, что ветви этой параболы пересекают ось, а значит, уравнение имеет 2 корня, а функция принимает как положительные и отрицательные значения!

В самом начале, когда мы давали определение квадратичной функции, было сказано, что и - некоторые числа. А могут ли они быть равны нулю? Ну конечно, могут! Даже открою еще больший секрет (который и не секрет вовсе, но упомянуть о нем стоит): на эти числа (и) вообще никакие ограничения не накладываются!

Ну что, давай посмотрим, что будет с графиками, если и равны нулю.

Как видно, графики рассматриваемых функций (и) сместились так, что их вершины находятся теперь в точке с координатами, то есть на пересечении осей и, на направлении ветвей это никак не отразилось. Таким образом, можно сделать вывод, что и отвечают за «передвижения» графика параболы по системе координат.

График функции касается оси в точке. Значит, уравнение имеет один корень. Таким образом, функция принимает значения больше либо равные нулю.

Придерживаемся той же логики с графиком функции. Он касается оси x в точке. Значит, уравнение имеет один корень. Таким образом, функция принимает значения меньше либо равные нулю, то есть.

Таким образом, чтобы определить знак выражения, первое, что необходимо сделать - это найти корни уравнения. Это нам очень пригодится.

Квадратное неравенство

Квадратное неравенство - это неравенство, состоящее из одной квадратичной функции. Таким образом, все квадратные неравенства сводятся к следующим четырём видам:

При решении таких неравенств нам пригодятся умения определять, где квадратичная функция больше, меньше, либо равна нулю. То есть:

  • если перед нами неравенство вида, то фактически задача сводится к тому, чтобы определить числовой промежуток значений, при котором парабола лежит выше оси.
  • если перед нами неравенство вида, то фактически задача сводится к тому, чтобы определить числовой промежуток значений x, при котором парабола лежит ниже оси.

Если неравенства нестрогие (и), то корни (координаты пересечений параболы с осью) включаются в искомый числовой промежуток, при строгих неравенствах - исключаются.

Это все достаточно формализовано, однако не надо отчаиваться и пугаться! Сейчас разберём примеры, и все станет на свои места.

При решении квадратных неравенств будем придерживаться приведённого алгоритма, и нас ждёт неизбежный успех!

Алгоритм Пример:
1) Запишем соответствующее неравенству квадратное уравнение (просто меняем знак неравенства на знак равенства «=»).
2) Найдём корни этого уравнения.
3) Отметим корни на оси и схематично покажем ориентацию ветвей параболы («вверх» или «вниз»)
4) Расставим на оси знаки, соответствующие знаку квадратичной функции: там, где парабола выше оси, ставим « », а там, где ниже - « ».
5) Выписываем интервал(ы), соответствующий « » или « », в зависимости от знака неравенства. Если неравенство нестрогое , корни входят в интервал, если строгое - не входят.

Разобрался? Тогда вперёд закреплять!

Ну что, получилось? Если возникли затруднения, то разбирайся в решениях.

Решение:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». Неравенство нестрогое, поэтому корни включаются в интервалы:

Запишем соответствующее квадратное уравнение:

Найдём корни данного квадратного уравнения:

Схематично отметим полученные корни на оси и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». Неравенство строгое, поэтому корни не включаются в интервалы:

Запишем соответствующее квадратное уравнение:

Найдём корни данного квадратного уравнения:

данное уравнение имеет один корень

Схематично отметим полученные корни на оси и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». При любом функция принимает неотрицательные значения. Так как неравенство нестрогое, то ответом будет.

Запишем соответствующее квадратное уравнение:

Найдём корни данного квадратного уравнения:

Схематично нарисуем график параболы и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». При любом функция принимает положительные значения, следовательно, решением неравенства будет интервал:

КВАДРАТНЫЕ НЕРАВЕНСТВА. СРЕДНИЙ УРОВЕНЬ

Квадратичная функция.

Прежде чем говорить о теме «квадратные неравенства», вспомним что такое квадратичная функция и что из себя представляет её график.

Квадратичная функция - это функция вида,

Другими словами, это многочлен второй степени .

График квадратичной функции - парабола (помнишь, что это такое?). Её ветви направлены вверх, если "a) функция принимает только положительные значения при всех, а во втором () - только отрицательные:

В случае, когда у уравнения () ровно один корень (например, если дискриминант равен нулю), это значит, что график касается оси:

Тогда, аналогично предыдущему случаю, при функция неотрицательна при всех, а при - неположительна.

Так вот, мы ведь недавно уже научились определять, где квадратичная функция больше нуля, а где - меньше:

Если квадратное неравенство нестрогое , то корни входят в числовой промежуток, если строгое - не входят.

Если корень только один, - ничего страшного, будет везде один и тот же знак. Если корней нет, всё зависит только от коэффициента: если, то всё выражение больше 0, и наоборот.

Примеры (реши самостоятельно):

Ответы:

Корней нет, поэтому всё выражение в левой части принимает знак старшего коэффициента: при всех. А значит, решений неравенства нет.

Если квадратичная функция в левой части «неполная» - тем проще находить корни:

КВАДРАТНЫЕ НЕРАВЕНСТВА. КОРОТКО О ГЛАВНОМ

Квадратичная функция - это функция вида: ,

График квадратичной функции - парабола. Её ветви направлены вверх, если, и вниз, если:

  • Если требуется найти числовой промежуток, на котором квадратный трёхчлен больше нуля, то это числовой промежуток, где парабола лежит выше оси.
  • Если требуется найти числовой промежуток, на котором квадратный трёхчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси.

Виды квадратных неравенств:

Все квадратные неравенства сводятся к следующим четырём видам:

Алгоритм решения:

Алгоритм Пример:
1) Запишем соответствующее неравенству квадратное уравнение (просто меняем знак неравенства на знак равенства « »).
2) Найдём корни этого уравнения.
3) Отметим корни на оси и схематично покажем ориентацию ветвей параболы («вверх» или «вниз»)
4) Расставим на оси знаки, соответствующие знаку квадратичной функции: там где парабола выше оси, ставим « », а там где ниже - « ».
5) Выписываем интервал(ы), соответствующий(ие) « » или « », в зависимости от знака неравенства. Если неравенство нестрогое, корни входят в интервал, если строгое - не входят.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Введение… ………………………………………………………… 3

1. Классификация ошибок с примерами…………………………… .…… …5

1.1. Классификация по типам задач…… ……………………… … ……….5

1.2. Классификация по типам преобразований………………………………10

2. Тесты………………………… …………………….… .…………………….12

3. Протоколы решений……………… ……….….…………… ………… 18

3.1. Протоколы неверных решений……………………………… … 18

3.2. Ответы (протоколы верных решений)………………………………….34

3.3. Ошибки, допущенные в решениях…………………………………… 51

Приложение……………………….…………………………………………… 53

Литература……………………………………………………………………….56

ВВЕДЕНИЕ

“На ошибках учатся”, - гласит народная мудрость. Но для того, чтобы извлечь урок из негативного опыта, в первую очередь, необходимо увидеть ошибку. К сожалению, школьник зачастую не способен ее обнаружить при решении той или иной задачи. Вследствие чего возникла идея провести исследование, цель которого - выявить типичные ошибки, совершаемые учащимися, а также как можно более полно классифицировать их.

В рамках этого исследования был рассмотрен и прорешен большой набор задач из вариантов апрельского тестирования, тестов и письменных заданий вступительных экзаменов в ОмГУ, различных пособий и сборников задач для поступающих в вузы, внимательно изучены материалы заочной школы при НОФ ОмГУ. Полученные данные подверглись подробному анализу, при этом большое внимание было уделено логике решений. На основе этих данных были выделены наиболее часто допускаемые ошибки, то есть типичные.

По результатам этого анализа была сделана попытка систематизировать характерные ошибки и классифицировать их по типам преобразований и типам задач, среди которых были рассмотрены следующие: квадратные неравенства, системы неравенств, дробно-рациональные уравнения, уравнения с модулем, иррациональные уравнения, системы уравнений, задачи на движение, задачи на работу и производительность труда, тригонометрические уравнения, системы тригонометрических уравнений, планиметрия.

Классификация сопровождается иллюстрацией в форме неверных протоколов решений, что дает возможность помочь школьникам развить умение проверять и контролировать себя, критически оценивать свою деятельность, находить ошибки и пути их устранения.

Следующим этапом стала работа с тестами. Для каждой задачи были предложены пять вариантов ответов, из которых один верный, а остальные четыре неверные, но взяты не случайным образом, а соответствуют решению, в котором допущена конкретная стандартная для задач данного типа ошибка. Это дает основание для прогнозирования степени “грубости” ошибки и развития основных мыслительных операций (анализ, синтез, сравнение, обобщение). Тесты имеют следующую структуру:

Коды ошибок делятся на три вида: ОК – верный ответ, цифровой код - ошибка из классификации по типам задач, буквенный код – ошибка из классификации по типам преобразований. Их расшифровку можно посмотреть в главе 1. Классификация ошибок с примерами.

Далее были предложены задания найти ошибку в решении. Эти материалы были использованы при работе со слушателями заочной школы при НОФ ОмГУ, а также на курсах повышения квалификации учителей г.Омска и Омской области, проводимых НОФ ОмГУ.

В перспективе на основе проделанной работы можно создать систему контроля и оценки уровня знаний и умений тестируемого. Появляется возможность выявить проблемные области в работе, зафиксировать удачные методы и приемы, проанализировать, какое содержание обучения целесообразно расширить. Но для наибольшей эффективности этих методов необходима заинтересованность учащегося. С этой целью мной совместно с Чубрик А.В. и был разработан небольшой программный продукт, генерирующий неверные решения линейных и квадратных уравнений (теоретическая база и алгоритмы – я и Чуубрик А.В., помощь в реализации – студент гр. МП-803 Филимонов М.В.). Работа с данной программой дает школьнику возможность выступить в роли учителя, учеником которого является компьютер.

Полученные результаты могут послужить началом более серьезного исследования, которое в ближайшей и отдаленной перспективе сможет внести необходимые корректировки в систему обучения математике.

1. КЛАССИФИКАЦИЯ ОШИБОК С ПРИМЕРАМИ

1.1. Классификация по типам задач

1. Алгебраические уравнения и неравенства.

1.1. Квадратные неравенства. Системы неравенств:

1.1.1. Неправильно найдены корни квадратного трехчлена: неверно использована теорема Виета и формула для нахождения корней;

1.1.2. Неправильно изображен график квадратного трехчлена;

1.1.3. Неправильно определены значения аргумента, при которых неравенство выполняется;

1.1.4. Деление на выражение, содержащее неизвестную величину;

1.1.5. В системах неравенств неправильно взято пересечение решений всех неравенств;

1.1.6. Неправильно включены или не включены концы интервалов в окончательный ответ;

1.1.7. Округление.

1.2. Дробно-рациональные уравнения:

1.2.1. Неправильно указано или не указано ОДЗ: не учтено, что знаменатель дроби не должен быть равен нулю;

ОДЗ: .

1.2.2. При получении ответа не учитывается ОДЗ;

1

2. Далингер В.А. Типичные ошибки по математике на вступительных экзаменах и как их не допускать. – Омск: Изд-во Омского ИУУ, 1991.

3. Далингер В.А. Все для обеспечения успеха на выпускных и вступительных экзаменах по математике. Выпуск 5. Показательные, логарифмические уравнения, неравенства и их системы: Учебное пособие. – Омск: Изд-во ОмГПУ, 1996.

4. Далингер В.А. Начала математического анализа: Типичные ошибки, их причины и пути предупреждения: Учебное пособие. – Омск: «Издатель-Полиграфист», 2002.

5. Далингер В.А., Зубков А.Н. Пособие для сдачи экзамена по математике: Анализ ошибок абитуриентов по математике и пути их предупреждения. – Омск: Изд-во ОмГПУ, 1991.

6. Кутасов А.Д. Показательные и логарифмические уравнения, неравенства, системы: Учебно-методическое пособие N7. – Изд-во Российского открытого университета, 1992.

Ошибки, допускаемые обучающимися при решении логарифмических уравнений и неравенств, самые разнообразные: от неверного оформления решения до ошибок логического характера. об этих и других ошибках пойдет речь в этой статье.

1. Самая типичная ошибка состоит в том, что учащиеся при решении уравнений и неравенств без дополнительных пояснений используют преобразования, нарушающие равносильность, что приводит к потере корней и появлению посторонних коней.

Рассмотрим на конкретных примерах ошибки подобного рода, но прежде обращаем внимание читателя на следующую мысль: не бойтесь приобрести посторонние корни, их можно отбросить путем проверки, бойтесь потерять корни.

а) Решить уравнение:

log3(5 - x) = 3 - log3(-1 - x).

Это уравнение учащиеся очень часто решают следующим образом.

log3(5 - x) = 3 - log3(-1 - x), log3(5 - x) + log3(-1 - x) = 3, log3((5 - x)(-1 - x)) = 3, (5 - x)(-1 - x) = 33, x2 - 4x - 32 = 0,

x1 = -4; x2 = 8.

Учащиеся часто, не проводя дополнительных рассуждений, записывают оба числа в ответ. Но как показывает проверка, число x = 8 не является корнем исходного уравнения, так как при x = 8 левая и правая части уравнения теряют смысл. Проверка показывает, что число x = -4 является корнем заданного уравнения.

б) Решить уравнение

Область определения исходного уравнения задается системой

Для решения заданного уравнения перейдем к логарифму по основанию x, получим

Мы видим, что левая и правая части этого последнего уравнения при x = 1 не определены, но это число является корнем исходного уравнения (убедиться в этом можно путем непосредственной подстановки). Таким образом, формальный переход к новому основанию привел к потере корня. Чтобы избежать потери корня x = 1, следует указать, что новое основание должно быть положительным числом, отличным от единицы, и рассмотреть отдельно случай x = 1.

2. Целая группа ошибок, вернее сказать недочетов, состоит в том, что учащиеся не уделяют должного внимания нахождению области определения уравнений, хотя именно она в ряде случаев есть ключ к решению. Остановимся в связи с этим на примере.

Решить уравнение

Найдем область определения этого уравнения, для чего решим систему неравенств:

Откуда имеем x = 0. Проверим непосредственной подстановкой, является ли число x = 0 корнем исходного уравнения

Ответ: x = 0.

3. Типичной ошибкой учащихся является то, что они не владеют на нужном уровне определениями понятий, формулами, формулировками теорем, алгоритмами. Подтвердим сказанное следующим примером.

Решить уравнение

Приведем ошибочное решение этого уравнения:

Поверка показывает, что х = -2 не является корнем исходного уравнения.

Напрашивается вывод, что заданное уравнение корней не имеет.

Однако это не так. Выполнив подстановку х = -4 в заданное уравнение, мы можем убедиться, что это корень.

Проанализируем, почему произошла потеря корня.

В исходном уравнении выражения х и х + 3 могут быть одновременно оба отрицательными или оба положительными, но при переходе к уравнению эти же выражения могут быть только положительными. Следовательно, произошло сужение области определения, что и привело к потере корней.

Чтобы избежать потери корня, можно поступить следующим образом: перейдем в исходном уравнении от логарифма суммы к логарифму произведения. Возможно в этом случае появление посторонних корней, но от них, путем подстановки, можно освободиться.

4. Многие ошибки, допускаемые при решении уравнений и неравенств, являются следствием того, что учащиеся очень часто пытаются решать задачи по шаблону, то есть привычным путем. Покажем это на примере.

Решить неравенство

Попытка решать это неравенство привычными алгоритмическими способами не приведет к ответу. Решение здесь должно состоять в оценке значений каждого слагаемого левой части неравенства на области определения неравенства.

Найдем область определения неравенства:

Для всех x из промежутка (9;10] выражение имеет положительные значения (значения показательной функции всегда положительны).

Для всех x из промежутка (9;10] выражение x - 9 имеет положительные значения, а выражение lg(x - 9) имеет значения отрицательные или ноль, тогда выражение (- (x - 9) lg(x - 9) положительно или равно нулю.

Окончательно имеем x∈ (9;10]. Заметим, что при таких значениях переменной каждое слагаемое, стоящее в левой части неравенства, положительно (второе слагаемое может быть равно нулю), а значит их сумма всегда больше нуля. Следовательно, решением исходного неравенства является промежуток (9;10].

5. Одна из ошибок связана с графическим решением уравнений.

Решить уравнение

Наш опыт показывает, что учащиеся, решая это уравнение графически (заметим, что его другими элементарными способами решить нельзя), получают лишь один корень (он является абсциссой точки, лежащей на прямой y = x), ибо графики функций

это графики взаимно обратных функций.

На самом деле исходное уравнение имеет три корня: один из них является абсциссой точки, лежащей на биссектрисе первого координатного угла y = x, другой корень и третий корень Убедиться в справедливости сказанного можно непосредственной подстановкой чисел и в заданное уравнение.

Заметим, что уравнения вида logax = ax при 0 < a < e-e всегда имеют три действительных корня.

Этот пример удачно иллюстрирует следующий вывод: графическое решение уравнения f(x) = g(x) “безупречно”, если обе функции разномонотонны (одна из них возрастает, а другая - убывает), и недостаточно математически корректно в случае одномонотонных функций (обе либо одновременно убывают, либо одновременно возрастают).

6. Ряд типичных ошибок связан с тем, что учащиеся не совсем корректно решают уравнения и неравенства на основе функционального подхода. Покажем типичные ошибки такого рода.

а) Решить уравнение xx = x.

Функция, стоящая в левой части уравнения, - показательно-степенная и раз так, то на основание степени следует наложить такие ограничения: x > 0, x ≠ 1. Прологарифмируем обе части заданного уравнения:

Откуда имеем x = 1.

Логарифмирование не привело к сужению области определения исходного уравнения. Но тем не менее мы потеряли два корня уравнения; непосредственным усмотрением мы находим, что x = 1 и x = -1 являются корнями исходного уравнения.

б) Решить уравнение

Как и в предыдущем случае, мы имеем показательно-степенную функцию, а значит x > 0, x ≠ 1.

Для решения исходного уравнения прологарифмируем его обе части по любому основанию, например, по основанию 10:

Учитывая, что произведение двух множителей равно нулю тогда, когда хотя бы один из них равен нулю, а другой при этом имеет смысл, мы имеем совокупность двух систем:

Первая система не имеет решения; из второй системы мы получаем x = 1. Учитывая наложенные ранее ограничения, число x = 1 не должно являться корнем исходного уравнения, хотя непосредственной подстановкой мы убеждаемся в том, что это не так.

7. Рассмотрим некоторые ошибки, связанные с понятием сложной функции вида . Ошибку покажем на таком примере.

Определить вид монотонности функции .

Наша практика показывает, что абсолютное большинство учащихся определяют монотонность в данном случае лишь по основанию логарифма, а так как 0 < 0,5 < 1, то отсюда следует ошибочный вывод - функция убывает.

Нет! Эта функция возрастающая.

Условно для функции вида можно записать:

Возрастающая (Убывающая) = Убывающая;

Возрастающая (Возрастающая) = Возрастающая;

Убывающая (Убывающая) = Возрастающая;

Убывающая (Возрастающая) = Убывающая;

8. Решите уравнение

Это задание взято из третьей части ЕГЭ, которое оценивается баллами (максимальный балл - 4).

Приведем решение, которое содержит ошибки, а значит за него не будет выставлен максимальный балл.

Сводим логарифмы к основанию 3. Уравнение примет вид

Потенцируя, получаем

х1 = 1, х2 = 3.

Выполним проверку, чтобы выявить посторонние корни

, 1 = 1,

значит х = 1 - корень исходного уравнения.

значит х = 3 корнем исходного уравнения не является.

Поясним, почему это решение содержит ошибки. Суть ошибки в том, что запись , содержит две грубые ошибки. Первая ошибка: запись вообще не имеет смысла. Вторая ошибка: не верно, что произведение двух сомножителей, один из которых 0, обязательно будет нулем. Ноль будет в том и только в том случае, если один множитель - 0, а второй множитель имеет смысл. Здесь же, как раз, второй множитель смысла не имеет.

9. Вернемся к уже прокомментированной выше ошибке, но при этом приведем и новые рассуждения.

При решении логарифмических уравнений переходят к уравнению . Каждый корень первого уравнения является корнем и второго уравнения. Обратное, вообще говоря, неверно, поэтому, переходя от уравнения к уравнению , необходимо в конце проверить корни последнего подстановкой в исходное уравнение. Вместо проверки корней целесообразно заменять уравнение равносильной системой

Если при решении логарифмического уравнения выражения

где n - четное число, преобразовываются соответственно по формулам , , , то, так как во многих случаях при этом сужается область определения уравнения, возможна потеря некоторых его корней. Поэтому указанные формулы целесообразно применять в следующем виде:

n - четное число.

Обратно, если при решении логарифмического уравнения выражения , , , где n - четное число, преобразовываются соответственно в выражения

то область определения уравнения может расшириться, в силу чего возможно приобретение посторонних корней. Помня об этом, в подобных ситуациях необходимо следить за равносильностью преобразований и, если область определения уравнения расширяется, делать проверку получаемых корней.

10. При решении логарифмических неравенств с помощью подстановки мы всегда сначала решаем новое неравенство относительно новой переменной, и лишь в его решении делаем переход к старой переменной.

Школьники очень часто ошибочно делают обратный переход раньше, на стадии нахождения корней рациональной функции, получившейся в левой части неравенства. Этого делать не следует.

11. Приведем пример еще одной ошибки, связанной с решением неравенств.

Решите неравенство

.

Приведем ошибочное решение, которое очень часто предлагают учащиеся.

Возведем обе части исходного неравенства в квадрат. Будем иметь:

откуда получаем неверное числовое неравенство , что позволяет сделать вывод: заданное неравенство не имеет решений.