3x 2 6x 8 0 построить график. Как построить график функции. Построение графиков дробно-рациональных функций

Выберем на плоскости прямоугольную систему координат и будем откладывать на оси абсцисс значения аргумента х , а на оси ординат - значения функции у = f (х) .

Графиком функции y = f(x) называется множество всех точек, у которых абсциссы принадлежат области определения функции, а ординаты равны соответствующим значениям функции.

Другими словами, график функции y = f (х) - это множество всех точек плоскости, координаты х, у которых удовлетворяют соотношению y = f(x) .



На рис. 45 и 46 приведены графики функций у = 2х + 1 и у = х 2 - 2х .

Строго говоря, следует различать график функции (точное математическое определение которого было дано выше) и начерченную кривую, которая всегда дает лишь более или менее точный эскиз графика (да и то, как правило, не всего графика, а лишь его части, расположенного в конечной части плоскости). В дальнейшем, однако, мы обычно будем говорить «график», а не «эскиз графика».

С помощью графика можно находить значение функции в точке. Именно, если точка х = а принадлежит области определения функции y = f(x) , то для нахождения числа f(а) (т. е. значения функции в точке х = а ) следует поступить так. Нужно через точку с абсциссой х = а провести прямую, параллельную оси ординат; эта прямая пересечет график функции y = f(x) в одной точке; ордината этой точки и будет, в силу определения графика, равна f(а) (рис. 47).



Например, для функции f(х) = х 2 - 2x с помощью графика (рис. 46) находим f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 и т. д.

График функции наглядно иллюстрирует поведение и свойства функции. Например, из рассмотрения рис. 46 ясно, что функция у = х 2 - 2х принимает положительные значения при х < 0 и при х > 2 , отрицательные - при 0 < x < 2; наименьшее значение функция у = х 2 - 2х принимает при х = 1 .

Для построения графика функции f(x) нужно найти все точки плоскости, координаты х , у которых удовлетворяют уравнению y = f(x) . В большинстве случаев это сделать невозможно, так как таких точек бесконечно много. Поэтому график функции изображают приблизительно - с большей или меньшей точностью. Самым простым является метод построения графика по нескольким точкам. Он состоит в том, что аргументу х придают конечное число значений - скажем, х 1 , х 2 , x 3 ,..., х k и составляют таблицу, в которую входят выбранные значения функции.

Таблица выглядит следующим образом:



Составив такую таблицу, мы можем наметить несколько точек графика функции y = f(x) . Затем, соединяя эти точки плавной линией, мы и получаем приблизительный вид графика функции y = f(x).

Следует, однако, заметить, что метод построения графика по нескольким точкам очень ненадежен. В самом деле поведение графика между намеченными точками и поведение его вне отрезка между крайними из взятых точек остается неизвестным.

Пример 1 . Для построения графика функции y = f(x) некто составил таблицу значений аргумента и функции:




Соответствующие пять точек показаны на рис. 48.



На основании расположения этих точек он сделал вывод, что график функции представляет собой прямую (показанную на рис. 48 пунктиром). Можно ли считать этот вывод надежным? Если нет дополнительных соображений, подтверждающих этот вывод, его вряд ли можно считать надежным. надежным.

Для обоснования своего утверждения рассмотрим функцию

.

Вычисления показывают, что значения этой функции в точках -2, -1, 0, 1, 2 как раз описываются приведенной выше таблицей. Однако график этой функции вовсе не является прямой линией (он показан на рис. 49). Другим примером может служить функция y = x + l + sinπx; ее значения тоже описываются приведенной выше таблицей.

Эти примеры показывают, что в «чистом» виде метод построения графика по нескольким точкам ненадежен. Поэтому для построения графика заданной функции,как правило, поступают следующим образом. Сначала изучают свойства данной функции, с помощью которых можно построить эскиз графика. Затем, вычисляя значения функции в нескольких точках (выбор которых зависит от установленных свойств функции), находят соответствующие точки графика. И, наконец, через построенные точки проводят кривую, используя свойства данной функции.

Некоторые (наиболее простые и часто используемые) свойства функций, применяемые для нахождения эскиза графика, мы рассмотрим позже, а сейчас разберем некоторые часто применяемые способы построения графиков.


График функции у = |f(x)|.

Нередко приходится строить график функции y = |f(x) |, где f(х) - заданная функция. Напомним, как это делается. По определению абсолютной величины числа можно написать

Это значит, что график функции y =|f(x)| можно получить из графика, функции y = f(x) следующим образом: все точки графика функции у = f(х) , у которых ординаты неотрицательны, следует оставить без изменения; далее, вместо точек графика функции y = f(x) , имеющих отрицательные координаты, следует построить соответствующие точки графика функции у = -f(x) (т. е. часть графика функции
y = f(x) , которая лежит ниже оси х, следует симметрично отразить относительно оси х ).



Пример 2. Построить график функции у = |х|.

Берем график функции у = х (рис. 50, а) и часть этого графика при х < 0 (лежащую под осью х ) симметрично отражаем относительно оси х . В результате мы и получаем график функции у = |х| (рис. 50, б).

Пример 3 . Построить график функции y = |x 2 - 2x|.


Сначала построим график функции y = x 2 - 2x. График этой функции - парабола, ветви которой направлены вверх, вершина параболы имеет координаты (1; -1), ее график пересекает ось абсцисс в точках 0 и 2. На промежутке (0; 2) фукция принимает отрицательные значения, поэтому именно эту часть графика симметрично отразим относительно оси абсцисс. На рисунке 51 построен график функции у = |х 2 -2х| , исходя из графика функции у = х 2 - 2x

График функции y = f(x) + g(x)

Рассмотрим задачу построения графика функции y = f(x) + g(x). если заданы графики функций y = f(x) и y = g(x) .

Заметим, что областью определения функции y = |f(x) + g(х)| является множество всех тех значений х, для которых определены обе функции y = f{x) и у = g(х), т. е. эта область определения представляет собой пересечение областей определения, функций f{x) и g{x).

Пусть точки (х 0 , y 1 ) и (х 0 , у 2 ) соответственно принадлежат графикам функций y = f{x) и y = g(х) , т. е. y 1 = f(x 0), y 2 = g(х 0). Тогда точка (x0;. y1 + y2) принадлежит графику функции у = f(х) + g(х) (ибо f(х 0) + g(x 0 ) = y1 +y2 ),. причем любая точка графика функции y = f(x) + g(x) может быть получена таким образом. Следовательно, график функции у = f(х) + g(x) можно получить из графиков функций y = f(x) . и y = g(х) заменой каждой точки (х n , у 1) графика функции y = f(x) точкой (х n , y 1 + y 2), где у 2 = g(x n ), т. е. сдвигом каждой точки (х n , у 1 ) графика функции y = f(x) вдоль оси у на величину y 1 = g(х n ). При этом рассматриваются только такие точки х n для которых определены обе функции y = f(x) и y = g(x) .

Такой метод построения графика функции y = f(x) + g(х ) называется сложением графиков функций y = f(x) и y = g(x)

Пример 4 . На рисунке методом сложения графиков построен график функции
y = x + sinx .

При построении графика функции y = x + sinx мы полагали, что f(x) = x, а g(x) = sinx. Для построения графика функции выберем точки с aбциссами -1,5π, -, -0,5, 0, 0,5,, 1,5, 2. Значения f(x) = x, g(x) = sinx, y = x + sinx вычислим в выбранных точках и результаты поместим в таблице.


«Преобразование функций» - Качелями. Сдвиг по оси y вверх. Включи полную громкость – увеличишь a (амплитуду) колебаний воздуха. Сдвиг по оси x влево. Задачи урока. 3 балла. Музыкой. Постройте график функции и определите D(f), E(f) и T: Сжатие по оси x. Сдвиг по оси y вниз. Добавь красного цвета в палитру – уменьшишь k (частоту) электромагнитных колебаний.

«Функции нескольких переменных» - Производные высших порядков. Функцию двух переменных можно изобразить графически. Дифференциальное и интегральное исчисления. Внутренние и граничные точки. Определение предела функции 2-х переменных. Курс математического анализа. Берман. Предел функции 2-х переменных. График функции. Теорема. Ограниченная область.

«Понятие функции» - Способы построение графиков квадратичной функции. Изучение разных способов задания функции – важный методический прием. Особенности изучения квадратичной функции. Генетическая трактовка понятия «функция». Функции и графики в школьном курсе математики. Представление о линейной функции выделяется при построении графика некоторой линейной функции.

«Тема Функция» - Анализ. Нужно выяснить не то, что ученик не знает, а то, что он знает. Заложение основ для успешной сдачи ЕГЭ и поступление в ВУЗы. Синтез. Если ученики работают по-разному, то и учитель должен с ними работать по-разному. Аналогия. Обобщение. Распределение заданий ЕГЭ по основным блокам содержания школьного курса математики.

«Преобразование графиков функций» - Повторить виды преобразований графиков. Сопоставить каждому графику функцию. Симметрия. Цель урока: Построение графиков сложных функций. Рассмотрим примеры преобразований, объясним каждый вид преобразования. Преобразование графиков функций. Растяжение. Закрепить построение графиков функций с использованием преобразований графиков элементарных функций.

«Графики функций» - Функция вида. Область значений функции – все значения зависимой переменной у. Графиком функции является парабола. Графиком функции является кубическая парабола. Графиком функции является гипербола. Область определения и область значений функции. Каждую прямую соотнесите с её уравнением: Область определения функции – все значения независимой переменной х.

Построить кривую, заданную параметрическими уравнениями \

Исследуем сначала графики функций \(x\left(t \right)\) и \(x\left(t \right)\). Обе функции представляют собой кубические многочлены, которые определены для всех \(x \in \mathbb{R}.\) Находим производную \(x"\left(t \right):\) \[ {x"\left(t \right) = {\left({{t^3} + {t^2} - t} \right)^\prime } } = {3{t^2} + 2t - 1.} \] Решая уравнение \(x"\left(t \right) = 0,\) определяем стационарные точки функции \(x\left(t \right):\) \[ {x"\left(t \right) = 0,}\;\; {\Rightarrow 3{t^2} + 2t - 1 = 0,}\;\; {\Rightarrow {t_{1,2}} = \frac{{ - 2 \pm \sqrt {16} }}{6} = - 1;\;\frac{1}{3}.} \] При \(t = 1\) функция \(x\left(t \right)\) достигает максимума, равного \ а в точке \(t = \large\frac{1}{3}\normalsize\) она имеет минимум, равный \[ {x\left({\frac{1}{3}} \right) } = {{\left({\frac{1}{3}} \right)^3} + {\left({\frac{1}{3}} \right)^2} - \left({\frac{1}{3}} \right) } = {\frac{1}{{27}} + \frac{1}{9} - \frac{1}{3} = - \frac{5}{{27}}.} \] Рассмотрим производную \(y"\left(t \right):\) \[ {y"\left(t \right) = {\left({{t^3} + 2{t^2} - 4t} \right)^\prime } } = {3{t^2} + 4t - 4.} \] Находим стационарные точки функции \(y\left(t \right):\) \[ {y"\left(t \right) = 0,}\;\; {\Rightarrow 3{t^2} + 4t - 4 = 0,}\;\; {\Rightarrow {t_{1,2}} = \frac{{ - 4 \pm \sqrt {64} }}{6} = - 2;\;\frac{2}{3}.} \] Здесь, аналогично, функция \(y\left(t \right)\) достигает максимума в точке \(t = -2:\) \ и минимума в точке \(t = \large\frac{2}{3}\normalsize:\) \[ {y\left({\frac{2}{3}} \right) } = {{\left({\frac{2}{3}} \right)^3} + 2{\left({\frac{2}{3}} \right)^2} - 4 \cdot \frac{2}{3} } = {\frac{8}{{27}} + \frac{8}{9} - \frac{8}{3} } = { - \frac{{40}}{{27}}.} \] Графики функций \(x\left(t \right)\), \(y\left(t \right)\) схематически показаны на рисунке \(15a.\)

Рис.15a

Рис.15b

Рис.15с

Заметим, что так как \[ {\lim\limits_{t \to \pm \infty } x\left(t \right) = \pm \infty ,}\;\;\; {\lim\limits_{t \to \pm \infty } y\left(t \right) = \pm \infty ,} \] то кривая \(y\left(x \right)\) не имеет ни вертикальных, ни горизонтальных асимптот. Более того, поскольку \[ {k = \lim\limits_{t \to \pm \infty } \frac{{y\left(t \right)}}{{x\left(t \right)}} } = {\lim\limits_{t \to \pm \infty } \frac{{{t^3} + 2{t^2} - 4t}}{{{t^3} + {t^2} - t}} } = {\lim\limits_{t \to \pm \infty } \frac{{1 + \frac{2}{t} - \frac{4}{{{t^2}}}}}{{1 + \frac{1}{t} - \frac{1}{{{t^2}}}}} = 1,} \] \[ {b = \lim\limits_{t \to \pm \infty } \left[ {y\left(t \right) - kx\left(t \right)} \right] } = {\lim\limits_{t \to \pm \infty } \left({\cancel{\color{blue}{t^3}} + \color{red}{2{t^2}} - \color{green}{4t} - \cancel{\color{blue}{t^3}} - \color{red}{t^2} + \color{green}{t}} \right) } = {\lim\limits_{t \to \pm \infty } \left({\color{red}{t^2} - \color{green}{3t}} \right) = + \infty ,} \] то кривая \(y\left(x \right)\) не имеет также и наклонных асимптот.

Определим точки пересечения графика \(y\left(x \right)\) с осями координат. Пересечение с осью абсцисс происходит в следующих точках: \[ {y\left(t \right) = {t^3} + 2{t^2} - 4t = 0,}\;\; {\Rightarrow t\left({{t^2} + 2t - 4} \right) = 0;} \]

  1. \({{t^2} + 2t - 4 = 0,}\;\; {\Rightarrow D = 4 - 4 \cdot \left({ - 4} \right) = 20,}\;\; {\Rightarrow {t_{2,3}} = \large\frac{{ - 2 \pm \sqrt {20} }}{2}\normalsize = - 1 \pm \sqrt 5 .} \)

\ \[ {x\left({{t_2}} \right) = x\left({ - 1 - \sqrt 5 } \right) } = {{\left({ - 1 - \sqrt 5 } \right)^3} + {\left({ - 1 - \sqrt 5 } \right)^2} - \left({ - 1 - \sqrt 5 } \right) } = { - \left({1 + 3\sqrt 5 + 15 + 5\sqrt 5 } \right) + \left({1 + 2\sqrt 5 + 5} \right) + 1 + \sqrt 5 } = { - 16 - 8\sqrt 5 + 6 + 2\sqrt 5 + 1 + \sqrt 5 } = { - 9 - 5\sqrt 5 \approx 20,18;} \] \[ {x\left({{t_3}} \right) = x\left({ - 1 + \sqrt 5 } \right) } = {{\left({ - 1 + \sqrt 5 } \right)^3} + {\left({ - 1 + \sqrt 5 } \right)^2} - \left({ - 1 + \sqrt 5 } \right) } = { - \left({1 - 3\sqrt 5 + 15 - 5\sqrt 5 } \right) + \left({1 - 2\sqrt 5 + 5} \right) + 1 - \sqrt 5 } = { - 16 + 8\sqrt 5 + 6 - 2\sqrt 5 + 1 - \sqrt 5 } = { - 9 + 5\sqrt 5 \approx 2,18.} \] Таким же образом находим точки пересечения графика с осью ординат: \[ {x\left(t \right) = {t^3} + {t^2} - t = 0,}\;\; {\Rightarrow t\left({{t^2} + t - 1} \right) = 0;} \]
  1. \({{t^2} + t - 1 = 0,}\;\; {\Rightarrow D = 1 - 4 \cdot \left({ - 1} \right) = 5,}\;\; {\Rightarrow {t_{2,3}} = \large\frac{{ - 1 \pm \sqrt {5} }}{2}\normalsize.} \)

\ \[ {y\left({{t_2}} \right) = y\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right) } = {{\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right)^3} + 2{\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right)^2} - 4\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right) } = { - \frac{1}{8}\left({1 + 3\sqrt 5 + 15 + 5\sqrt 5 } \right) + \frac{1}{2}\left({1 + 2\sqrt 5 + 5} \right) + 2\left({1 + \sqrt 5 } \right) } = { - \cancel{2} - \cancel{\sqrt 5} + 3 + \cancel{\sqrt 5} + \cancel{2} + 2\sqrt 5 } = {3 + 2\sqrt 5 \approx 7,47;} \] \[ {y\left({{t_3}} \right) = y\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right) } = {{\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right)^3} + 2{\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right)^2} - 4\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right) } = { - \frac{1}{8}\left({1 - 3\sqrt 5 + 15 - 5\sqrt 5 } \right) + \frac{1}{2}\left({1 - 2\sqrt 5 + 5} \right) + 2\left({1 - \sqrt 5 } \right) } = { - \cancel{2} + \cancel{\sqrt 5} + 3 - \cancel{\sqrt 5} + \cancel{2} - 2\sqrt 5 } = {3 - 2\sqrt 5 \approx - 1,47.} \] Разделим ось \(t\) на \(5\) интервалов: \[ {\left({ - \infty , - 2} \right),}\;\; {\left({ - 2, - 1} \right),}\;\; {\left({ - 1,\frac{1}{3}} \right),}\;\; {\left({\frac{1}{3},\frac{2}{3}} \right),}\;\; {\left({\frac{2}{3}, + \infty } \right).} \] На первом интервале \(\left({ - \infty , - 2} \right)\) значения \(x\) и \(y\) возрастают от \(-\infty\) до \(x\left({ - 2} \right) = - 2\) и \(y\left({ - 2} \right) = 8.\) Это схематически показано на рисунке \(15b.\)

На втором промежутке \(\left({ - 2, - 1} \right)\) переменная \(x\) возрастает от \(x\left({ - 2} \right) = - 2\) до \(x\left({ - 1} \right) = 1,\) а переменная \(y\) убывает от \(y\left({ - 2} \right) = 8\) до \(y\left({ - 1} \right) = 5.\) Здесь мы имеем участок убывающей кривой \(y\left(x \right).\) Она пересекает ось ординат в точке \(\left({0,3 + 2\sqrt 5 } \right).\)

На третьем интервале \(\left({ - 1,\large\frac{1}{3}\normalsize} \right)\) обе переменные убывают. Значение \(x\) изменяется от \(x\left({ - 1} \right) = 1\) до \(x\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{5}{{27}}\normalsize.\) Соответственно, значение \(y\) уменьшается от \(y\left({ - 1} \right) = 5\) до \(y\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{29}{{27}}\normalsize.\) Кривая \(y\left(x \right)\) при этом пересекает начало координат.

На четвертом интервале \(\left({\large\frac{1}{3}\normalsize,\large\frac{2}{3}\normalsize} \right)\) переменная \(x\) возрастает от \(x\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{5}{{27}}\normalsize\) до \(x\left({\large\frac{2}{3}\normalsize} \right) = \large\frac{2}{{27}}\normalsize,\) а переменная \(y\) убывает от \(y\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{29}{{27}}\normalsize\) до \(y\left({\large\frac{2}{3}\normalsize} \right) = - \large\frac{40}{{27}}\normalsize.\) На этом участке кривая \(y\left(x \right)\) пересекает ось ординат в точке \(\left({0,3 - 2\sqrt 5 } \right).\)

Наконец, на последнем интервале \(\left({\large\frac{2}{3}\normalsize, + \infty } \right)\) обе функции \(x\left(t \right)\), \(y\left(t \right)\) возрастают. Кривая \(y\left(x \right)\) пересекает ось абсцисс в точке \(x = - 9 + 5\sqrt 5 \approx 2,18.\)

Для уточнения формы кривой \(y\left(x \right)\) вычислим точки максимума и минимума. Производная \(y"\left(x \right)\) выражается в виде \[ {y"\left(x \right) = {y"_x} } = {\frac{{{y"_t}}}{{{x"_t}}} } = {\frac{{{{\left({{t^3} + 2{t^2} - 4t} \right)}^\prime }}}{{{{\left({{t^3} + {t^2} - t} \right)}^\prime }}} } = {\frac{{3{t^2} + 4t - 4}}{{3{t^2} + 2t - 1}} } = {\frac{{\cancel{3}\left({t + 2} \right)\left({t - \frac{2}{3}} \right)}}{{\cancel{3}\left({t + 1} \right)\left({t - \frac{1}{3}} \right)}} } = {\frac{{\left({t + 2} \right)\left({t - \frac{2}{3}} \right)}}{{\left({t + 1} \right)\left({t - \frac{1}{3}} \right)}}.} \] Изменение знака производной \(y"\left(x \right)\) показано на рисунке \(15c.\) Видно, что в точке \(t = - 2,\) т.е. на границе \(I\)-го и \(II\)-го интервалов кривая имеет максимум, а при \(t = \large\frac{2}{3}\normalsize\) (на границе \(IV\)-го и \(V\)-го интервалов) существует минимум. При переходе через точку \(t = \large\frac{1}{3}\normalsize\) производная также меняет знак с плюса на минус, но в этой области кривая \(y\left(x \right)\) не является однозначной функцией. Поэтому указанная точка экстремумом не является.

Исследуем также выпуклость данной кривой. Вторая производная \(y""\left(x \right)\) имеет вид: \[ y""\left(x \right) = {y""_{xx}} = \frac{{{{\left({{y"_x}} \right)}"_t}}}{{{x"_t}}} = \frac{{{{\left({\frac{{3{t^2} + 4t - 4}}{{3{t^2} + 2t - 1}}} \right)}^\prime }}}{{{{\left({{t^3} + {t^2} - t} \right)}^\prime }}} = \frac{{\left({6t + 4} \right)\left({3{t^2} + 2t - 1} \right) - \left({3{t^2} + 4t - 4} \right)\left({6t + 2} \right)}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{18{t^3} + 12{t^2} + 12{t^2} + 8t - 6t - 4 - \left({18{t^3} + 24{t^2} - 24t + 6{t^2} + 8t - 8} \right)}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{\cancel{\color{blue}{18{t^3}}} + \color{red}{24{t^2}} + \color{green}{2t} - \color{maroon}{4} - \cancel{\color{blue}{18{t^3}}} - \color{red}{30{t^2}} + \color{green}{16t} + \color{maroon}{8}}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{ - \color{red}{6{t^2}} + \color{green}{18t} + \color{maroon}{4}}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{ - 6\left({t - \frac{{9 - \sqrt {105} }}{6}} \right)\left({t - \frac{{9 + \sqrt {105} }}{6}} \right)}}{{{{\left({t + 1} \right)}^3}{{\left({3t - 1} \right)}^3}}}. \] Следовательно, вторая производная меняет свой знак на противоположный при переходе через следующие точки (рис.\(15с\)): \[ {{t_1} = - 1:\;\;x\left({ - 1} \right) = 1,}\;\; {y\left({ - 1} \right) = 5;} \] \[ {{t_2} = \frac{{9 - \sqrt {105} }}{6}:}\;\; {x\left({\frac{{9 - \sqrt {105} }}{6}} \right) \approx 0,24;}\;\; {y\left({\frac{{9 - \sqrt {105} }}{6}} \right) \approx 0,91;} \] \[ {{t_3} = \frac{1}{3}:}\;\; {x\left({\frac{1}{3}} \right) = - \frac{5}{{27}},}\;\; {y\left({\frac{1}{3}} \right) = - \frac{{29}}{{27}};} \] \[ {{t_4} = \frac{{9 + \sqrt {105} }}{6}:}\;\; {x\left({\frac{{9 + \sqrt {105} }}{6}} \right) \approx 40,1;}\;\; {y\left({\frac{{9 + \sqrt {105} }}{6}} \right) \approx 40,8.} \] Поэтому указанные точки представляют собой точки перегиба кривой \(y\left(x \right).\)

Схематический график кривой \(y\left(x \right)\) показан выше на рисунке \(15b.\)

Функция y=x^2 называется квадратичной функцией. Графиком квадратичной функции является парабола. Общий вид параболы представлен на рисунке ниже.

Квадратичная функция

Рис 1. Общий вид параболы

Как видно из графика, он симметричен относительно оси Оу. Ось Оу называется осью симметрии параболы. Это значит, что если провести на графике прямую параллельную оси Ох выше это оси. То она пересечет параболу в двух точках. Расстояние от этих точек до оси Оу будет одинаковым.

Ось симметрии разделяет график параболы как бы на две части. Эти части называются ветвями параболы. А точка параболы которая лежит на оси симметрии называется вершиной параболы. То есть ось симметрии проходит через вершину параболы. Координаты этой точки (0;0).

Основные свойства квадратичной функции

1. При х =0, у=0, и у>0 при х0

2. Минимальное значение квадратичная функция достигает в своей вершине. Ymin при x=0; Следует также заметить, что максимального значения у функции не существует.

3. Функция убывает на промежутке (-∞;0] и возрастает на промежутке }