Вода, химические свойства. Вода. Свойства воды Химические свойства воды с уравнениями реакций

Самое важное, уникальное по свойствам и составу вещество нашей планеты - это, конечно, вода. Ведь именно благодаря ей на Земле жизнь есть, в то время как на других известных сегодня объектах Солнечной системы ее нет. Твердая, жидкая, в виде пара - она нужна и важна любая. Вода и ее свойства составляют предмет изучения целой научной дисциплины - гидрологии.

Количество воды на планете

Если рассматривать показатель количества данного оксида во всех агрегатных состояниях, то его на планете около 75% от общей массы. При этом следует учитывать связанную воду в органических соединениях, живых существах, минералах и прочих элементах.

Если учитывать только жидкое и твердое состояние воды, показатель падет до 70,8%. Рассмотрим, как распределяются эти проценты, где содержится рассматриваемое вещество.

  1. Соленой воды в океанах и морях, солончаковых озерах на Земле 360 млн км 2 .
  2. Пресная вода распределена неравномерно: ее в ледниках Гренландии, Арктики, Антарктиды заковано во льды 16,3 млн км 2 .
  3. В пресных реках, болотах и озерах сосредоточено 5,3 млн км 2 оксида водорода.
  4. Подземные воды составляют 100 млн м 3 .

Именно поэтому космонавтам из далекого космического пространства видно Землю в форме шара голубого цвета с редкими вкраплениями суши. Вода и ее свойства, знание особенностей строения являются важными элементами науки. К тому же, в последнее время человечество начинает испытывать явную нехватку пресной воды. Может быть, такие знания помогут в решении данной проблемы.

Состав воды и строение молекулы

Если рассмотреть эти показатели, то сразу станут понятны и свойства, которые проявляет это удивительное вещество. Так, молекула воды состоит из двух атомов водорода и одного атома кислорода, поэтому имеет эмпирическую формулу Н 2 О. Кроме того, при построении самой молекулы большую роль играют электроны обоих элементов. Посмотрим, что собой представляют структура воды и ее свойства.

Очевидно, что каждая молекула ориентирована вокруг другой, и все вместе они формируют общую кристаллическую решетку. Интересно то, что оксид построен в форме тетраэдра - атом кислорода в центре, а две пары электронов его и два атома водорода вокруг асимметрично. Если провести через центры ядер атомов линии и соединить их, то получится именно тетраэдрическая геометрическая форма.

Угол между центром атома кислорода и ядрами водородов составляет 104,5 0 С. Длина связи О-Н = 0,0957 нм. Наличие электронных пар кислорода, а также его большее в сравнении с водородами сродство к электрону обеспечивают формирование в молекуле отрицательно заряженного поля. В противовес ему ядра водородов образуют положительно заряженную часть соединения. Таким образом, выходит, что молекула воды - диполь. Это определяет то, какой может быть вода, и ее физические свойства также зависят от строения молекулы. Для живых существ эти особенности играют жизненно важную роль.

Основные физические свойства

К таковым принято относить кристаллическую решетку, температуры кипения и плавления, особенные индивидуальные характеристики. Все их и рассмотрим.

  1. Строение кристаллической решетки оксида водорода зависит от агрегатного состояния. Оно может быть твердым - лед, жидким - основная вода при обычных условиях, газообразным - пар при повышении температуры воды свыше 100 0 С. Красивые узорные кристаллы формирует лед. Решетка в целом рыхлая, но соединение очень прочное, плотность низкая. Видеть ее можно на примере снежинок или морозных узоров на стеклах. У обычной воды решетка не имеет постоянной формы, она изменяется и переходит из одного состояния в другое.
  2. Молекула воды в космическом пространстве имеет правильную форму шара. Однако под действием земной силы тяжести она искажается и в жидком состоянии принимает форму сосуда.
  3. То, что по структуре оксид водорода - диполь, обуславливает следующие свойства: высокая теплопроводность и теплоемкость, которая прослеживается в быстром нагревании и долгом остывании вещества, способность ориентировать вокруг себя как ионы, так и отдельные электроны, соединения. Это делает воду универсальным растворителем (как полярным, так и нейтральным).
  4. Состав воды и строение молекулы объясняют способность этого соединения образовывать множественные водородные связи, в том числе с другими соединениями, имеющими неподеленные электронные пары (аммиак, спирт и прочие).
  5. Температура кипения жидкой воды - 100 0 С, кристаллизация наступает при +4 0 С. Ниже этого показателя - лед. Если же увеличивать давление, то температура кипения воды резко возрастет. Так, при высоких атмосферах в ней можно растопить свинец, но она при этом даже не закипит (свыше 300 0 С).
  6. Свойства воды весьма значимы для живых существ. Например, одно из самых важных - поверхностное натяжение. Это формирование тончайшей защитной пленки на поверхности оксида водорода. Речь идет о воде в жидком состоянии. Эту пленку разорвать механическим воздействием очень сложно. Учеными установлено, что понадобится сила, равная весу в 100 тонн. Как ее заметить? Пленка очевидна, когда вода капает из крана медленно. Видно, что она словно в какой-то оболочке, которая растягивается до определенного предела и веса и отрывается в виде круглой капельки, слегка искаженной силой тяжести. Благодаря поверхностному натяжению многие предметы могут находиться на поверхности воды. Насекомые, имеющие особые приспособления, могут свободно передвигаться по ней.
  7. Вода и ее свойства аномальны и уникальны. По органолептическим показателям данное соединение - бесцветная жидкость без вкуса и запаха. То, что мы называем вкусом воды, - это растворенные в ней минералы и другие компоненты.
  8. Электропроводность оксида водорода в жидком состоянии зависит от того, сколько и каких солей в нем растворены. Дистиллированная вода, не содержащая никаких примесей, электрический ток не проводит.

Лед - это особое состояние воды. В структуре этого ее состояния молекулы связаны друг с другом водородными связями и формируют красивую кристаллическую решетку. Но она достаточно неустойчива и легко может расколоться, растаять, то есть деформироваться. Между молекулами сохраняется множество пустот, размеры которых превышают размеры самих частиц. Благодаря этому плотность льда меньше, чем жидкого оксида водорода.

Это имеет большое значение для рек, озер и прочих пресных водоемов. Ведь в зимний период вода в них не замерзает полностью, а лишь покрывается плотной коркой более легкого льда, всплывающего наверх. Если бы данное свойство не было характерно для твердого состояния оксида водорода, то водоемы промерзали бы насквозь. Жизнь под водой была бы невозможна.

Кроме того, твердое состояние воды имеет большое значение как источник огромного количества питьевых пресных запасов. Это ледники.

Особенным свойством воды можно назвать явление тройной точки. Это такое состояние, при котором лед, пар и жидкость могут существовать одновременно. Для этого требуются такие условия, как:

  • высокое давление - 610 Па;
  • температура 0,01 0 С.

Показатель прозрачности воды варьируется в зависимости от посторонних примесей. Жидкость может быть полностью прозрачной, опалесцентной, мутной. Поглощаются волны желтого и красного цветов, глубоко проникают лучи фиолетовые.

Химические свойства

Вода и ее свойства - важный инструмент в понимании многих процессов жизнедеятельности. Поэтому они изучены очень хорошо. Так, гидрохимию интересуют вода и ее химические свойства. Среди них можно назвать следующие:

  1. Жесткость. Это такое свойство, которое объясняется наличием солей кальция и магния, их ионов в растворе. Подразделяется на постоянную (соли названных металлов: хлоридов, сульфатов, сульфитов, нитратов), временную (гидрокарбонаты), которая устраняется кипячением. В России воду перед использованием смягчают химическим путем для лучшего качества.
  2. Минерализация. Свойство, основанное на дипольном моменте оксида водорода. Благодаря его наличию молекулы способны присоединять к себе множество других веществ, ионов и удерживать их. Так формируются ассоциаты, клатраты и прочие объединения.
  3. Окислительно-восстановительные свойства. Как универсальный растворитель, катализатор, ассоциат, вода способна взаимодействовать с множеством простых и сложных соединений. С одними она выступает в роли окислителя, с другими - наоборот. Как восстановитель реагирует с галогенами, солями, некоторыми менее активными металлами, с многими органическими веществами. Последние превращения изучает органическая химия. Вода и ее свойства, в частности, химические, показывают, насколько она универсальна и уникальна. Как окислитель она вступает в реакции с активными металлами, некоторыми бинарными солями, многими органическими соединениями, углеродом, метаном. Вообще химические реакции с участием данного вещества нуждаются в подборе определенных условий. Именно от них и будет зависеть исход реакции.
  4. Биохимические свойства. Вода является неотъемлемой частью всех биохимических процессов организма, являясь растворителем, катализатором и средой.
  5. Взаимодействие с газами с образованием клатратов. Обычная жидкая вода может поглощать даже неактивные химически газы и располагать их внутри полостей между молекулами внутренней структуры. Такие соединения принято называть клатратами.
  6. Со многими металлами оксид водорода формирует кристаллогидраты, в которые он включен в неизменном виде. Например, медный купорос (CuSO 4 *5H 2 O), а также обычные гидраты (NaOH*H 2 O и другие).
  7. Для воды характерны реакции соединения, при которых происходит образование новых классов веществ (кислот, щелочей, оснований). Они не являются окислительно-восстановительными.
  8. Электролиз. Под действием электрического тока молекула разлагается на составные газы - водород и кислород. Один из способов получения их в лаборатории и промышленности.

С точки зрения теории Льюиса вода - это слабая кислота и слабое основание одновременно (амфолит). То есть можно сказать о некоей амфотерности в химических свойствах.

Вода и ее полезные свойства для живых существ

Сложно переоценить то значение, которое имеет оксид водорода для всего живого. Ведь вода и есть сам источник жизни. Известно, что без нее человек не смог бы прожить и недели. Вода, ее свойства и значение просто колоссальны.

  1. Это универсальный, то есть способный растворять и органические, и неорганические соединения, растворитель, действующий в живых системах. Именно поэтому вода - источник и среда для протекания всех каталитических биохимических преобразований, с формированием сложных жизненно важных комплексных соединений.
  2. Способность образовывать водородные связи делает данное вещество универсальным в выдерживании температур без изменения агрегатного состояния. Если бы это было не так, то при малейшем снижении градусов она превращалась бы в лед внутри живых существ, вызывая гибель клеток.
  3. Для человека вода - источник всех основных бытовых благ и нужд: приготовление пищи, стирка, уборка, принятие ванны, купание и плавание и прочее.
  4. Промышленные заводы (химические, текстильные, машиностроительные, пищевые, нефтеперерабатывающие и другие) не сумели бы осуществлять свою работу без участия оксида водорода.
  5. Издревле считалось, что вода - это источник здоровья. Она применялась и применяется сегодня как лечебное вещество.
  6. Растения используют ее как основной источник питания, за счет чего они продуцируют кислород - газ, благодаря которому существует жизнь на нашей планете.

Можно назвать еще десятки причин того, почему вода - это самое широко распространенное, важное и необходимое вещество для всех живых и искусственно созданных человеком объектов. Мы привели только самые очевидные, главные.

Гидрологический цикл воды

Иными словами, это ее круговорот в природе. Очень важный процесс, позволяющий постоянно пополнять исчезающие запасы воды. Как он происходит?

Основных участников трое: подземные (или грунтовые) воды, поверхностные воды и Мировой океан. Важна также и атмосфера, конденсирующая и выдающая осадки. Также активными участниками процесса являются растения (в основном деревья), способные поглощать огромное количество воды в сутки.

Итак, процесс происходит следующим образом. Грунтовые воды заполняют подземные капилляры и стекаются к поверхности и Мировому океану. Затем поверхностные воды поглощаются растениями и транспирируются в окружающую среду. Также происходит испарение с огромных площадей океанов, морей, рек, озер и прочих водоемов. Попав в атмосферу, вода что делает? Конденсируется и проливается обратно в виде осадков (дождь, снег, град).

Если бы не происходили эти процессы, то запасы воды, особенно пресной, давно бы уже закончились. Именно поэтому охране и нормальному гидрологическому циклу уделяется людьми большое внимание.

Понятие о тяжелой воде

В природе оксид водорода существует в виде смеси изотопологов. Это связано с тем, что водород формирует три вида изотопа: протий 1 Н, дейтерий 2 Н, тритий 3 Н. Кислород, в свою очередь, также не отстает и образует три устойчивые формы: 16 О, 17 О, 18 О. Именно благодаря этому существует не просто обычная протиевая вода состава Н 2 О (1 Н и 16 О), но еще и дейтериевая, и тритиевая.

При этом устойчива по структуре и форме именно дейтериевая (2 Н), которая включается в состав практически всех природных вод, но в малом количестве. Именно ее называют тяжелой. Она несколько отличается от обычной или легкой по всем показателям.

Тяжелая вода и ее свойства характеризуются несколькими пунктами.

  1. Кристаллизуется при температуре 3,82 0 С.
  2. Кипение наблюдается при 101,42 0 С.
  3. Плотность составляет 1,1059 г/см 3 .
  4. Как растворитель в несколько раз хуже легкой воды.
  5. Имеет химическую формулу D 2 O.

При проведении опытов, показывающих влияние подобной воды на живые системы, было установлено, что жить в ней способны лишь некоторые виды бактерий. Для приспособления и акклиматизации колониям потребовалось время. Но, приспособившись, они полностью восстановили все жизненно важные функции (размножение, питание). Кроме того, стали очень устойчивы к воздействию радиоактивного излучения. Опыты на лягушках и рыбах положительного результата не дали.

Современные области применения дейтерия и образованной им тяжелой воды - атомная и ядерная энергетика. Получить в лабораторных условиях такую воду можно при помощи электролиза обычной - она образуется как побочный продукт. Сам дейтерий формируется при многократных перегонках водорода в специальных устройствах. Применение его основано на способности замедлять нейтронные синтезы и протонные реакции. Именно тяжелая вода и изотопы водорода - основа для создания ядерной и водородной бомбы.

Опыты на применении дейтериевой воды людьми в небольших количествах показали, что задерживается она недолго - полный вывод наблюдается через две недели. Употреблять ее в качестве источника влаги для жизни нельзя, однако техническое значение просто огромно.

Талая вода и ее применение

Свойства такой воды издревле были определены людьми как целебные. Давно было замечено, что при таянии снега животные стараются напиться водой из образовавшихся лужиц. Позже были тщательно исследованы ее структура и биологическое воздействие на организм человека.

Талая вода, ее признаки и свойства находятся посередине между обычной легкой и льдом. Изнутри она образована не просто молекулами, а набором кластеров, сформированных кристаллами и газом. То есть внутри пустот между структурными частями кристалла находятся водород и кислород. По общему виду строение талой воды сходно со строением льда - сохраняется структурность. Физические свойства такого оксида водорода незначительно меняются в сравнении с обычным. Однако биологическое воздействие на организм отличное.

При замораживании воды первой фракцией превращается в лед более тяжелая часть - это дейтериевые изотопы, соли и примеси. Поэтому эту сердцевину следует удалять. А вот остальная часть - чистая, структурированная и полезная вода. Каково воздействие на организм? Учеными Донецкого НИИ были названы следующие виды улучшений:

  1. Ускорение восстановительных процессов.
  2. Укрепление иммунитета.
  3. У детей после ингаляций такой водой происходит восстановление и излечение простудных заболеваний, проходит кашель, насморк и прочее.
  4. Улучшается дыхание, состояние гортани и слизистых оболочек.
  5. Общее самочувствие человека, активность повышаются.

Сегодня существует ряд сторонников лечения именно талой водой, которые пишут свои положительные отзывы. Однако есть ученые, в том числе медики, которые эти взгляды не поддерживают. Они считают, что вреда от такой воды не будет, но и пользы мало.

Энергетика

Почему свойства воды могут изменяться и восстанавливаться при переходе в разные агрегатные состояния? Ответ на этот вопрос следующий: у данного соединения существует своя информационная память, которая записывает все изменения и приводит к восстановлению структуры и свойств в нужное время. Биоэнергетическое поле, через которое проходит часть воды (та, что поступает из космоса), несет в себе мощный заряд энергии. Эту закономерность часто используют при лечении. Однако с медицинской точки зрения не каждая вода способна оказать благоприятный эффект, в том числе и информационный.

Структурированная вода - что это?

Это такая вода, которая имеет несколько иное строение молекул, расположение кристаллических решеток (такое, которое наблюдается у льда), но это все же жидкость (талая также относится к этому типу). В этом случае состав воды и ее свойства с научной точки зрения не отличаются от тех, что характерны для обычного оксида водорода. Поэтому структурированная вода не может иметь такого широкого лечебного эффекта, который ей приписывают эзотерики и сторонники нетрадиционной медицины.

Пептиды, или короткие белки, содержатся во многих продуктах питания — мясе, рыбе, некоторых растениях. Когда мы съедаем кусок мяса, белок расщепляется в процессе пищеварения на короткие пептиды; они всасываются в желудок, тонкий кишечник, попадают в кровь, клетку, затем в ДНК и регулируют активность генов.

Перечисленные препараты желательно периодически применять всем людям после 40 лет для профилактики 1-2 раза в год, после 50 лет — 2-3 раза в год. Остальные препараты — по необходимости.

Как принимать пептиды

Поскольку восстановление функциональной способности клеток происходит постепенно и зависит от уровня существующего их поражения, эффект может наступить как через 1-2 недели после начала приема пептидов, так и через 1-2 месяца. Рекомендуется проведение курса в течение 1-3 месяцев. Важно учитывать, что трехмесячный прием натуральных пептидных биорегуляторов имеет пролонгированное действие, т.е. работает в организме еще порядка 2-3-х месяцев. Полученный эффект удерживается в течение полугода, а каждый следующий курс приема обладает эффектом потенцирования, т.е. эффектом усиления уже полученного.

Поскольку каждый пептидный биорегулятор имеет направленность действия на определенный орган и не влияет никак на другие органы и ткани, одновременный прием препаратов разного действия не только не противопоказан, но зачастую рекомендован (до 6-7 препаратов одновременно).
Пептиды совместимы с любыми лекарственными препаратами и биологическими добавками. На фоне приема пептидов дозы одновременно принимаемых лекарственных препаратов целесообразно постепенно снижать, что положительным образом скажется на организме больного.

Короткие регуляторные пептиды не подвергаются трансформации в желудочно-кишечном тракте, поэтому они могут спокойно, легко и просто применяться в капсулированном виде практически всеми желающими.

Пептиды в ЖКТ распадаются до ди- и три-пептидов. Дальнейший распад до аминокислот происходит в кишечнике. Это означает, что пептиды можно принимать даже без капсулы. Это очень важно, когда человек по каким-то причинам не может глотать капсулы. Это же касается и сильно ослабленных людей или детей, когда дозировку необходимо уменьшить.
Пептидные биорегуляторы можно принимать как в профилактических, так и в терапевтических целях.

  • Для профилактики нарушения функций различных органов и систем обычно рекомендуется по 2 капсулы 1 раз в день утром натощак в течение 30 дней, 2 раза в год.
  • В лечебных целях, для коррекции нарушения функций различных органов и систем с целью повышения эффективности комплексного лечения заболеваний рекомендуется по 2 капсулы 2-3 раза в день в течение 30 дней.
  • Пептидные биорегуляторы представлены в капсулированном виде (натуральные пептиды Цитомаксы и синтезированнные пептиды Цитогены) и в жидком виде.

    Эффективность натуральных (ПК) в 2-2,5 раза ниже, чем капсулированных. Поэтому их прием в лечебных целях должен быть более продолжительным (до полугода). Жидкие пептидные комплексы наносятся на внутреннюю поверхность предплечья в проекции хода вен или на запястье и растираются до полного впитывания. Через 7-15 минут происходит связывание пептидов с дендритными клетками, которые осуществляют их дальнейший транспорт до лимфоузлов, где пептиды делают «пересадку» и отправляются с током крови к нужным органам и тканям. Хотя пептиды — это белковые вещества, их молекулярная масса гораздо меньше, чем у белков, поэтому они легко проникают через кожу. Еще больше улучшает проникновение пептидных препаратов их липофилизация, то есть соединение с жировой основой, именно поэтому практически все пептидные комплексы наружного применения имеют в своем составе жирные кислоты.

    Не такдавно появилась первая в мировой практике серия пептидных препаратов для сублингвального применения

    Принципиально новый способ применения и наличие в составе каждого из препаратов целого ряда пептидов обеспечивают им максимально быстрое и эффективное действие. Данный препарат, попадая в подъязычное пространство с густой сетью капилляров, способен проникать прямо в кровоток, минуя всасывание через слизистую пищеварительного тракта и метаболическую первичную дезактивацию печени. С учетом непосредственного попадания в системный кровоток, скорость наступления эффекта в несколько раз превышает скорость при приеме препарата перорально.

    Линия Revilab SL — это комплексные синтезированные препараты, имеющие в своем составе 3-4 компонента очень коротких цепочек (по 2-3 аминокислоты). По концентрации пептидов — это среднее между капсулированными пептидами и ПК в растворе. По быстроте действия — занимает лидирующую позицию, т.к. всасывается и попадает к цели очень быстро.
    Данную линию пептидов имеет смысл вводить в курс на начальном этапе, а затем переходить на натуральные пептиды.

    Еще одна инновационная серия — линия мультикомпонентных пептидных препаратов. Линия включает в себя 9 препаратов, каждый из которых содержит целый ряд коротких пептидов, а также антиоксиданты и строительный материал для клеток. Идеальный вариант для тех, кто не любит принимать много препаратов, а предпочитает получить все в одной капсуле.

    Действие данных биорегуляторов нового поколения направлено на замедление процессов старения, поддержание нормального уровня обменных процессов, профилактику и коррекцию различных состояний; реабилитацию после тяжелых заболеваний, травм и операций.

    Пептиды в косметологии

    Пептиды можно включать не только в лекарства, но и в другие продукты. Например, российскими учеными разработана великолепная клеточная косметика с натуральными и синтезированными пептидами, которая оказывает воздействие на глубокие слои кожи.

    Внешнее старение кожи зависит от многих факторов: образа жизни, стрессов, солнечного света, механических раздражителей, климатических колебаний, увлечений диетами и т.д. С возрастом кожа обезвоживается, теряет эластичность, становится шероховатой, на ней появляется сеть морщин и глубоких бороздок. Всем нам известно, что процесс естественного старения закономерен и необратим. Противостоять ему невозможно, но его можно замедлить благодаря революционным ингредиентам косметологии — низкомолекулярным пептидам.

    Уникальность пептидов состоит в том, что они свободно проходят через роговой слой в дерму до уровня живых клеток и капилляров. Восстановление кожи идет глубоко изнутри и, как результат, — кожа долгое время сохраняет свою свежесть. К пептидной косметике не происходит привыкания — даже если перестать ею пользоваться, кожа просто физиологически будет стареть.

    Косметические гиганты создают все новые и новые «чудодейственные» средства. Мы доверчиво покупаем, используем, но чуда не происходит. Мы слепо верим надписям на банках, не подозревая, что зачастую это всего лишь маркетинговый прием.

    Например, большинство косметических компаний вовсю производят и рекламируют кремы от морщин с коллагеном в качестве основного ингредиента. Между тем, ученые пришли к выводу, что молекулы коллагена настолько велики, что просто не могут проникнуть в кожу. Они оседают на поверхности эпидермиса, а потом смываются водой. То есть, покупая кремы с коллагеном, мы буквально выкидываем деньги в трубу.

    В качестве еще одного популярного активного ингредиента антиэйдж-косметики используется ресвератрол. Он действительно является мощным антиоксидантом и иммуностимулятором, но только в виде микроинъекций. Если втирать его в кожу, чуда не произойдет. Опытным путем было доказано, что на выработку коллагена кремы с ресвератролом практически не влияют.

    НПЦРИЗ (ныне Peptides) в соавторстве с учеными Санкт-Петербургского института биорегуляции и геронтологии разработал уникальную пептидную серию клеточной косметики (на основе натуральных пептидов) и серию (на основе синтезированных пептидов).

    В их основу заложена группа пептидных комплексов с различными точками приложения, оказывающих мощное и видимое омолаживающее действие на кожу. В результате применения происходит стимуляция регенерации клеток кожи, кровообращения и микроциркуляции, а также синтеза коллаген-эластинового каркаса кожи. Все это проявляется в лифтинге, а также улучшении текстуры, цвета и влажности кожи.

    В настоящее время разработано 16 видов кремов, в т.ч. омолаживающие и для проблемной кожи (с пептидами тимуса), для лица против морщин и для тела против растяжек и рубцов (с пептидами костно-хрящевой ткани), против сосудистых звездочек (с пептидами сосудов), антицеллюлитный (с пептидами печени), для век от отеков и темных кругов (с пептидами поджелудочной железы, сосудов, костно-хрящевой ткани и тимуса), против варикоза (с пептидами сосудов и костно-хрящевой ткани) и др. Все кремы, помимо пептидных комплексов, содержат и другие мощные активные ингредиенты. Важно, что кремы не содержат химических компонентов (консервантов и пр.).

    Эффективность действия пептидов доказана в многочисленных экспериментальных и клинических исследованиях. Конечно, чтобы выглядеть прекрасно, одних кремов мало. Нужно омолаживать свой организм и изнутри, применяя время от времени различные комплексы пептидных биорегуляторов и микронутриентов.

    Линейка косметических средств с пептидами, помимо кремов, включает в себя также шампунь, маску и бальзам для волос, декоративную косметику, тоники, сыворотки для кожи лица, шеи и области декольте и пр.

    Следует учитывать также, что на внешний вид существенно влияет потребляемый сахар.
    Из-за процесса под названием «гликация» сахар разрушительно действует на кожу. Избыток сахара увеличивает скорость деградации коллагена, что приводит к морщинам.

    Гликацию относят к основным теориям старения, наряду с окислительной и фотостарением.
    Гликация – взаимодействие сахаров с белками, в первую очередь коллагена, с образованием поперечных сшивок – это естественный для нашего организма, постоянный необратимый процесс в нашем теле и коже, приводящий к отвердению соединительной ткани.
    Продукты гликации – частицы A.G.E. (Advanced Glycation Endproducts) – оседают в клетках, накапливаются в нашем теле и приводят ко множеству негативных эффектов.
    В результате гликации кожа теряет тонус и становится тусклой, она обвисает и выглядит старой. Это напрямую связано с образом жизни: снизьте потребление сахара и мучного (что полезно и для нормального веса) и каждый день ухаживайте за кожей!

    Для противостояния гликации, торможения деградации белков и возрастных изменений кожи компания разработала антивозрастной препарат с мощным дегликирующим и антиоксидантным эффектом. Действие данного средства основано на стимулировании процесса дегликации, воздействующего на глубинные процессы старения кожи и способствующего разглаживанию морщин и повышению ее упругости. Препарат включает в себя мощный комплекс для борьбы с гликацией — экстракт розмарина, карнозин, таурин, астаксантин и альфа-липоевую кислоту.

    Пептиды — панацея от старости?

    По словам создателя пептидных препаратов В.Хавинсона, старение во многом зависит от образа жизни: «Никакие препараты не спасут, если человек не обладает набором знаний и правильным поведением — это соблюдение биоритмов, правильное питание, физкультура и прием тех или иных биорегуляторов». Что касается генетической предрасположенности к старению, то от генов, по его словам, мы зависим лишь на 25 процентов.

    Ученый утверждает, что пептидные комплексы обладают огромным восстановительным потенциалом. Но возводить их в ранг панацейности, приписывать пептидам несуществующие свойства (скорее всего по коммерческим соображениям) категорически неправильно!

    Заботиться о своем здоровье сегодня — означает дать себе шанс жить завтра. Мы сами должны улучшать свой образ жизни — заниматься спортом, отказываться от вредных привычек, лучше питаться. И конечно же, по мере возможности применять пептидные биорегуляторы, способствующие сохранению здоровья и увеличению продолжительности жизни.

    Пептидные биорегуляторы, разработанные российскими учеными несколько десятков лет назад, стали доступны широкому потребителю только в 2010 году. Постепенно о них узнает все больше людей во всем мире. Секрет сохранения здоровья и моложавости многих известных политиков, артистов, ученых кроется в применении пептидов. Вот только некоторые из них:
    Министр энергетики ОАЭ Шейх Саид,
    Президент Белоруссии Лукашенко,
    Бывший Президент Казахстана Назарбаев,
    Король Таиланда,
    летчик-космонавт Г.М. Гречко и его жена Л.К.Гречко,
    артисты: В.Леонтьев, Е.Степаненко и Е.Петросян, Л. Измайлов, Т.Повалий, И.Корнелюк, И.Винер (тренер по художественной гимнастике) и многие-многие другие...
    Пептидные биорегуляторы применяют спортсмены 2-х олимпийских сборных России — по художественной гимнастике и гребле. Применение препаратов позволяет увеличить стрессоустойчивость наших гимнасток и способствует успехам сборной на международных чемпионатах.

    Если в молодости мы можем себе позволить делать профилактику здоровья периодически, когда нам хочется, то с возрастом, к сожалению, такой роскоши у нас нет. И если Вы не хотите завтра быть в таком состоянии, что Ваши близкие измучаются с Вами и будут ждать Вашей кончины с нетерпением, если Вы не хотите умереть среди чужих людей, потому что ничего не помните и все вокруг кажутся Вам чужими на самом деле, Вы должны с сегодняшнего дня принять меры и заботиться даже не столько о себе, сколько о своих близких.

    В Библии написано: «Ищите и обрящете». Возможно, Вы нашли свой способ оздоровления и омоложения.

    Все в наших руках, и только мы сами можем о себе позаботиться. Никто за нас этого не сделает!






    Оксид водорода (H 2 O), гораздо более известный всем нам под названием "вода", без преувеличения, является главной жидкостью в жизнедеятельности организмов на Земле, ибо все химико-билогические реакции проходят, либо с участием воды, либо в растворах.

    Вода является вторым, после воздуха, самым важным веществом для организма человека. Прожить без воды человек может не более 7-8 суток.

    Чистая вода в природе может существовать в трех агрегатных состояниях: в твердом - в виде льда, в жикдом, собственно вода, в газообразном - в виде пара. Таким разнообразием агрегатных состояний в природе больше не может похвастаться ни одно вещество.

    Физические свойства воды

    • при н.у. - это жидкость без цвета, запаха и вкуса;
    • вода обладает высокой теплоёмкостью и низкой электропроводностью;
    • температура плавления 0°C;
    • температура кипения 100°C;
    • максимальная плотность воды при 4°C равна 1 г/см 3 ;
    • вода - хороший растворитель.

    Строение молекулы воды

    Молекула воды состоит из одного атома кислорода, который соединен с двумя атомами водорода, при этом связи O-H образуют угол в 104,5°, при при этом общие электронные пары смещены к атому кислорода, который более электроотрицателен по сравнению с атомами водорода, поэтому, на атоме кислорода формируется частичный отрицательный заряд, соответственно, на атомах водорода - положительный. Таким образом, молекулу воды можно рассматривать, как диполь.

    Молекулы воды могут между собой образовывать водородные связи, притягиваясь противоположно заряженными частями (на рисунке водородные связи показаны пунктиром):

    Формирование водородных связей объясняет высокую плотность воды, температуру ее кипения и плавления.

    Количество водородных связей зависит от температуры - чем выше температура, тем меньшее кол-во связей образуется: в парах воды присутствуют только отдельные ее молекулы; в жидком состоянии - образуются ассоциаты (H 2 O) n , в кристаллическом состоянии каждая молекула воды связана с соседними молекулами четырьмя водородными связями.

    Химические свойства воды

    Вода "охотно" вступает в реакции с другими веществами:

    • с щелочными и щелочноземельными металлами вода реагирует при н.у.: 2Na+2H 2 O = 2NaOH+H 2
    • с менее активными металлами и неметаллами вода реагирует только при высокой температуре: 3Fe+4H 2 O=FeO → Fe 2 O 3 +4H 2 C+2H 2 O → CO 2 +2H 2
    • с основными оксидами при н.у. вода реагирует с образованием оснований: CaO+H 2 O = Ca(OH) 2
    • с кислотными оксидами при н.у. вода реагирует с образованием кислот: CO 2 +H 2 O = H 2 CO 3
    • вода является главным участником реакций гидролиза (подробнее см. Гидролиз солей);
    • вода участвует в реакциях гидратации, присоединяясь к органическим веществам с двойными и тройными связями.

    Растворимость веществ в воде

    • хорошо растворимые вещества - в 100 г воды растворяется более 1 г вещества при н.у.;
    • малорастворимые вещества - в 100 г воды растворяется 0,01-1 г вещества;
    • практически нерастворимые вещества - в 100 г водры растворяется менее 0,01 г вещества.

    Совершенно нерастворимых веществ в природе не существует.

    Вода является наиболее распространённым растворителем на планете Земля, во многом определяющим характер земной химии, как науки. Большая часть химии, при её зарождении как науки, начиналась именно как химия водных растворов веществ. Её иногда рассматривают, как амфолит — и кислоту и основание одновременно (катион H+ анион OH−). В отсутствие посторонних веществ в воде одинакова концентрация гидроксид-ионов и ионов водорода (или ионов гидроксония), pKa ≈ ок. 16.

    Вода химически довольно активное вещество. Сильнополярные молекулы воды сольватируют ионы и молекулы, образуют гидраты и кристаллогидраты. Сольволиз, и в частности гидролиз, происходит в живой и неживой природе, и широко используется в химической промышленности.

    Вода реагирует при комнатной температуре:

    С активными металлами (натрий, калий, кальций, барий и др.)

    С галогенами (фтором, хлором) и межгалоидными соединениями

    С солями, образованными слабой кислотой и слабым основанием, вызывая их полный гидролиз

    С ангидридами и галогенангидридами карбоновых и неорганических кислот

    С активными металлорганическими соединениями (диэтилцинк, реактивы Гриньяра, метил натрий и т. д.)

    С карбидами, нитридами, фосфидами, силицидами, гидридами активных металлов (кальция, натрия, лития и др.)

    Со многими солями, образуя гидраты

    С боранами, силанами

    С кетенами, недоокисью углерода

    С фторидами благородных газов

    Вода реагирует при нагревании:

    С железом, магнием

    С углем, метаном

    С некоторыми алкилгалогенидами

    Вода реагирует в присутствии катализатора:

    С амидами, эфирами карбоновых кислот

    С ацетиленом и другими алкинами

    С алкенами

    С нитрилами

    Химические свойства воды определяются особенностями ее строения. Вода довольно устойчивое вещество, она начинает разлагаться на водород и кислород при нагревании по крайней мере до 1000°С (происходит термическая диссоциация) или под действием ультрафиолетового излучения (фотохимическая диссоциация).

    Вода относится к химически активным соединениям. Например, реагирует с фтором. Хлор при нагревании или на свету разлагает воду с выделением атомарного кислорода:

    H2O + Cl2 = HCl + HClO (НСlО = НСl + О)

    При обычных условиях она взаимодействует с активными металлами:

    2H2O + Ca = Ca(ОН) 2 + H2

    2H2O + 2Na = 2NaOH + H2

    Вода вступает в реакцию и со многими неметаллами. Например, при взаимодействии с атомарным кислородом образуется пероксид водорода:

    H2O + O = H2O2

    Многие оксиды реагируют с водой, образуя основания и кислоты:

    CO2 + H2O = H2CO3

    CaO + H2O = Ca(OH)2

    При взаимодействии с некоторыми солями образуются кристаллогидраты. При нагревании они теряют кристаллизационную воду:

    Na2CO3 + 10H2O = Na2CO3*10H2O

    Вода также разлагает большинство солей (так называемый гидролиз).

    Благородные металлы с водой не реагируют.

    Кроме главных ионов, содержание которых в воде достаточно велико, ряд элементов: азот, фосфор, кремний, алюминий, железо, фтор - присутствуют в ней в концентрациях от 0,1 до 10 мг/л. Они называются мезоэлементами (от греч. "мезос" - "средний", "промежуточный").

    Азот в форме нитратов NO3- попадает в водоёмы с дождевой водой, а в форме аминокислот, мочевины (NH2)2CO и солей аммония NH4+ - при разложении органических остатков.

    Фосфор существует в воде в форме гидрофосфатов HPO32- и дигидрофосфатов H2PO3-, образующихся в результате разложения органических остатков.

    Кремний является постоянным компонентом химического состава природных вод. Этому способствует в отличие от других компонентов повсеместная распространенность соединений кремния в горных породах, и только малая растворимость последних объясняет малое содержание кремния в воде. Концентрация кремния в природных водах обычно составляет несколько миллиграммов в 1 л. В подземных водах она повышается и часто достигает десятков миллиграммов в 1 л, а в горячих термальных водах - даже сотен. На растворимость кремния, кроме температуры сильно влияет повышение pH раствора. Сравнительно малое содержание кремния в поверхностных водах, уступающее растворимости диоксида кремния (125 мг/л при 26 °С, 170 мг/л при 38 °С), указывает на наличие в воде процессов уменьшающих ее концентрацию. К ним надо отнести потребление кремния водными организмами, многие из которых, например диатомовые водоросли, строят свой скелет из кремния. Кроме того, кремниевая кислота как более слабая вытесняется из раствора угольной кислотой:

    Na4SiO4 + 4CO2 + 4H2O = H4SiO4 + 4NaHCO3

    Способствует неустойчивости кремния в растворе и склонность кремниевой кислоты при определенных условиях переходить в гель. В очень мало минерализованных водах кремний составляет существенную, а иногда и преобладающую часть химического состава воды, несмотря на его малое абсолютное содержание. Присутствие кремния в воде является серьезной помехой в технике, так как при продолжительном кипячении воды кремний образует в котлах очень твердую силикатную накипь.

    Алюминий поступает в водоёмы в результате действия кислот на глины (каолин):

    Al2(OH)4 + 6H+ = 2SiO2 + 5H2O + 2Al3+

    Основной источник железа - железосодержащие глины. Органические остатки (ниже обозначаются как "С"), находящиеся в контакте с ними, восстанавливают железо до двухвалентного, которое медленно вымывается в форме гидрокарбоната или солей гуминовых кислот:

    2Fe2O3 + "C" + 4H2O + 7CO2 = 4Fe(HCO3)2

    Когда вода с растворёнными в ней ионами Fe2+ вступает в контакт с воздухом, железо быстро окисляется, образуя коричневый осадок гидроксида Fe(OH)3. Со временем он превращается в болотную руду - бурый железняк (лимонит) FeO(OH). Карельская болотная руда использовалась в XVIII-XIX столетиях для получения железа.

    Синеватая плёнка на поверхности воды - это Fe(OH)3, образующийся, когда подземные воды, содержавшие ионы Fe2+, вступают в контакт с воздухом. Ее часто путают с масляной пленкой, однако различить их очень легко: у пленки гидроксида железа рваные края. Если поверхность воды слегка взволновать, гидроксидная пленка, в отличие от масляной, не будет переливаться.

    Химический состав природной воды определяет предшествующая ему история, т.е. путь, совершенный водой в процессе своего круговорота. Количество растворенных веществ в такой воде будет зависеть, с одной стороны, от состава тех веществ, с которыми она соприкасалась, с другой - от условий, в которых происходили эти взаимодействия. Влиять на химический состав воды могут следующие факторы: горные породы, почвы, живые организмы, деятельность человека, климат, рельеф, водный режим, растительность, гидрогеологические и гидродинамические условия и пр. Рассмотрим лишь некоторые факторы, влияющие на состав воды.

    Почвенный раствор и фильтрующиеся через почву атмосферные осадки способны усиливать растворение пород и минералов. Это одно из важнейших свойств почвы, влияющее на формирование состава природных вод, является результатом увеличения концентрации диоксида углерода в почвенном растворе, выделяющегося при дыхании живых организмов и корневой системы в почвах и биохимическом распаде органических остатков. Вследствие этого концентрация CO2 в почвенном воздухе возрастает от 0,033 %, свойственных атмосферному воздуху, до 1 % и более в почвенном воздухе (в тяжелых глинистых почвах концентрация CO2 в почвенном воздухе достигает иногда 5-10 %, придавая тем самым раствору сильное агрессивное действие по отношению к породам). Другим фактором, усиливающим агрессивное действие фильтрующейся через почву воды, является органическое вещество - почвенный гумус, образующийся в почвах при трансформации растительных остатков. В составе гумуса в качестве активных реагентов прежде всего следует назвать гуминовые и фульвокислоты и более простые соединения, например органические кислоты (лимонная, щавелевая, уксусная, яблочная и др.), амины и т.п. Почвенный раствор, обогащаясь органическими кислотами и CO2, во много раз ускоряет химическое выветривание алюмосиликатов, содержащихся в почвах. Аналогично вода, фильтрующаяся через почву, ускоряет химическое выветривание алюмосиликатов и карбонатных пород, подстилающих почву. Известняк легко образует растворимый (до 1,6 г/л) гидрокарбонат кальция:

    CaCO3 + H2O + CO2 ↔ Ca(HCO3)2

    Почти на всей европейской части России (кроме Карелии и Мурманской области) известняки, а также доломиты MgCO3 CaCO3 залегают довольно близко к поверхности. Поэтому вода здесь содержит преимущественно гидрокарбонаты кальция и магния. В таких реках, как Волга, Дон, Северная Двина, и основных их притоках гидрокарбонаты кальция и магния составляют от 3/4 до 9/10 всех растворённых солей.

    Соли попадают в водоёмы и в результате деятельности человека. Так, хлоридами натрия и кальция зимой посыпают дороги, чтобы растапливать лёд. Весной вместе с талой водой хлориды стекают в реки. Треть хлоридов в реках европейской части России привнесена туда человеком. В реках, на которых стоят крупные города, эта доля гораздо больше.

    Рельеф местности косвенно влияет на состав воды, способствуя вымыванию солей из толщи пород. Глубина эрозионного вреза реки облегчает поступление в реку более минерализованных грунтовых вод нижних горизонтов. Этому же способствуют и другие виды депрессий (речные долины, балки, овраги), улучшающие дренирование водосбора.

    Климат же, создает общий фон, на котором происходит большинство процессов, влияющих на формирование химическою состава природных вод. Климат прежде всего определяет баланс тепла и влаги, от которого зависит увлажненность местности и объем водного стока, а следовательно, и разбавление или концентрирование природных растворов и возможность растворения веществ или выпадения их в осадок.

    Огромное влияние на химический состав воды и его изменение с течением времени оказывают источники питания водного объекта и их соотношение. В период таяния снега вода в реках, озерах и водохранилищах имеет более низкую минерализацию, чем в период, когда большая часть питания осуществляется за счет грунтовых и подземных вод. Это обстоятельство используют при регулировании наполнения водохранилищ и сброса из них воды. Как правило, водохранилища наполняют в период весеннего половодья, когда приточная вода имеет меньшую минерализацию.

    Вода (оксид водорода) - бинарное неорганическое соединение с химической формулой Н 2 O. Молекула воды состоит из двух атомов водорода и одного - кислорода, которые соединены между собой ковалентной связью.

    Пероксид водорода.


    Физические и химические свойства

    Физические и химические свойства воды определяются химическим, электронным и пространственным строением молекул Н 2 O.

    Атомы Н и О в молекуле Н 2 0 находятся в своих устойчивых степенях окисления, соответственно +1 и -2; поэтому вода не проявляет ярко выраженных окислительных или восстановительных свойств. Обратите внимание: в гидридах металлов водород находится в степени окисления -1.



    Молекула Н 2 O имеет угловое строение. Связи Н-O очень полярны. На атоме О существует избыточный отрицательный заряд, на атомах Н - избыточные положительные заряды. 8 целом молекула Н 2 O является полярной, т.е. диполем. Этим объясняется тот факт, что вода является хорошим растворителем для ионных и полярных веществ.



    Наличие избыточных зарядов на атомах Н и О, а также неподеленных электронных пар у атомов О обусловливает образование между молекулами воды водородных связей, вследствие чего они объединяются в ассоциаты. Существованием этих ассоциатов объясняются аномально высокие значения т. пл. и т. кип. воды.

    Наряду с образованием водородных связей, результатом взаимного влияния молекул Н 2 O друг на друга является их самоионизация:
    в одной молекуле происходит гетеролитический разрыв полярной связи О-Н, и освободившийся протон присоединяется к атому кислорода другой молекулы. Образующийся ион гидроксония Н 3 О + по существу является гидратированным ионом водорода Н + Н 2 O, поэтому упрощенно уравнение самоионизации воды записывается так:


    Н 2 O ↔ H + + OH -


    Константа диссоциации воды чрезвычайно мала:



    Это свидетельствует о том, что вода очень незначительно диссоциирует на ионы, и поэтому концентрация недиссоциированных молекул Н 2 O практически постоянна:




    В чистой воде [Н + ] = [ОН - ] = 10 -7 моль/л. Это означает, что вода представляет собой очень слабый амфотерный электролит, не проявляющий в заметной степени ни кислотных, ни основных свойств.
    Однако вода оказывает сильное ионизирующее действие на растворенные в ней электролиты. Под действием диполей воды полярные ковалентные связи в молекулах растворенных веществ превращаются в ионные, ионы гидратируются, связи между ними ослабляются, в результате чего происходит электролитическая диссоциация. Например:
    HCl + Н 2 O - Н 3 O + + Сl -

    (сильный электролит)


    (или без учета гидратации: HCl → Н + + Сl -)


    CH 3 COOH + H 2 O ↔ CH 3 COO - + H + (слабый электролит)


    (или CH 3 COOH ↔ CH 3 COO - + H +)


    Согласно теории кислот и оснований Брёнстеда-Лоури, в этих процессах вода проявляет свойства основания (акцептор протонов). По той же теории в роли кислоты (донора протонов) вода выступает в реакциях, например, с аммиаком и аминами:


    NH 3 + H 2 O ↔ NH 4 + + OH -


    CH 3 NH 2 + H 2 O ↔ CH 3 NH 3 + + OH -

    Окислительно-восстановительные реакции с участием воды

    I. Реакции, в которых вода играет роль окислителя

    Эти реакции возможны только с сильными восстановителями, которые способны восстановить ионы водорода, входящие в состав молекул воды, до свободного водорода.


    1) Взаимодействие с металлами


    а) При обычных условиях Н 2 О взаимодействует только со щел. и щел.-зем. металлами:


    2Na + 2Н + 2 О = 2NaOH + H 0 2


    Ca + 2Н + 2 О = Ca(OH) 2 + H 0 2


    б) При высокой температуре Н 2 О вступает в реакции и с некоторыми другими металлами, например:


    Mg + 2Н + 2 О = Mg(OH) 2 + H 0 2


    3Fe + 4Н + 2 О = Fe 2 O 4 + 4H 0 2


    в) Al и Zn вытесняют Н 2 из воды в присутствии щелочей:


    2Al + 6Н + 2 О + 2NaOH = 2Na + 3H 0 2


    2) Взаимодействие с неметаллами, имеющими низкую ЭО (реакции происходят в жестких условиях)


    C + Н + 2 О = CO + H 0 2 («водяной газ»)


    2P + 6Н + 2 О = 2HPO 3 + 5H 0 2


    В присутствии щелочей кремний вытесняет водород из воды:


    Si + Н + 2 О + 2NaOH = Na 2 SiO 3 + 2H 0 2


    3) Взаимодействие с гидридами металлов


    NaH + Н + 2 O = NaOH + H 0 2


    CaH 2 + 2Н + 2 О = Ca(OH) 2 + 2H 0 2


    4) Взаимодействие с угарным газом и метаном


    CO + Н + 2 O = CO 2 + H 0 2


    2CH 4 + O 2 + 2Н + 2 O = 2CO 2 + 6H 0 2


    Реакции используются в промышленности для получения водорода.

    II. Реакции, в которых вода играет роль восстановителя

    ти реакции возможны только с очень сильными окислителями, которые способны окислить кислород СО С. О. -2, входящий в состав воды, до свободного кислорода O 2 или до пероксид-анионов 2- . В исключительном случае (в реакции с F 2) образуется кислород со c o. +2.


    1) Взаимодействие с фтором


    2F 2 + 2Н 2 O -2 = O 0 2 + 4HF



    2F 2 + Н 2 O -2 = O +2 F 2 + 2HF


    2) Взаимодействие с атомарным кислородом


    Н 2 O -2 + O = Н 2 O - 2


    3) Взаимодействие с хлором


    При высокой Т происходит обратимая реакция


    2Cl 2 + 2Н 2 O -2 = O 0 2 + 4HCl

    III. Реакции внутримолекулярного окисления - восстановления воды.

    Под действием электрического тока или высокой температуры может происходить разложение воды на водород и кислород:


    2Н + 2 O -2 = 2H 0 2 + O 0 2


    Термическое разложение - процесс обратимый; степень термического разложения воды невелика.

    Реакции гидратации

    I. Гидратация ионов. Ионы, образующиеся при диссоциации электролитов в водных растворах, присоединяют определенное число молекул воды и существуют в виде гидратированных ионов. Некоторые ионы образуют столь прочные связи с молекулами воды, что их гидраты могут существовать не только в растворе, но и в твердом состоянии. Этим объясняется образование кристаллогидратов типа CuSO4 5H 2 O, FeSO 4 7Н 2 O и др., а также аквакомплексов: CI 3 , Br 4 и др.

    II. Гидратация оксидов

    III. Гидратация органических соединений, содержащих кратные связи

    Реакции гидролиза

    I. Гидролиз солей


    Обратимый гидролиз:


    а) по катиону соли


    Fe 3+ + Н 2 O = FeOH 2+ + Н + ; (кислая среда. рН

    б) по аниону соли


    СО 3 2- + Н 2 O = НСО 3 - + ОН - ; (щелочная среда. рН > 7)


    в) по катиону и по аниону соли


    NH 4 + + СН 3 СОО - + Н 2 O = NH 4 OH + СН 3 СООН (среда, близкая к нейтральной)


    Необратимый гидролиз:


    Al 2 S 3 + 6Н 2 O = 2Аl(ОН) 3 ↓ + 3H 2 S


    II. Гидролиз карбидов металлов


    Al 4 C 3 + 12Н 2 O = 4Аl(ОН) 3 ↓ + 3CH 4 нетан


    СаС 2 + 2Н 2 O = Са(ОН) 2 + С 2 Н 2 ацетилен


    III. Гидролиз силицидов, нитридов, фосфидов


    Mg 2 Si + 4Н 2 O = 2Mg(OH) 2 ↓ + SiH 4 силан


    Ca 3 N 2 + 6Н 2 O = ЗСа(ОН) 2 + 2NH 3 аммиак


    Cu 3 P 2 + 6Н 2 O = ЗСu(ОН) 2 + 2РН 3 фосфин


    IV. Гидролиз галогенов


    Cl 2 + Н 2 O = HCl + HClO


    Вr 2 + Н 2 O = НВr + НВrО


    V. Гидролиз органических соединений


    Классы органических веществ

    Продукты гидролиза (органические)

    Галогеналканы (алкилгалогениды)

    Арилгалогениды

    Дигалогеналканы

    Альдегиды или кетоны

    Алкоголяты металлов

    Галогенангидриды карбоновых кислот

    Карбоновые кислоты

    Ангидриды карбоновых кислот

    Карбоновые кислоты

    Сложные зфиры карбоновых кислот

    Карбоновые кислоты и спирты

    Глицерин и высшие карбоновые кислоты

    Ди- и полисахариды

    Моносахариды

    Пептиды и белки

    α-Аминокислоты

    Нуклеиновые кислоты