Чему равняется средняя линия треугольника. Средняя линия треугольника. Полные уроки — Гипермаркет знаний. Применение свойств средней линии треугольника и трапеции

1 Дополнительное построение, ведущее к теореме о средней линии треугольника, трапеции и свойствам подобия треугольников.

И она равна половине гипотенузы .
Следствие 1.
Следствие 2.

2 Все прямоугольные треугольники с одинаковым острым углом - подобны. Взгляд на тригонометрические функции.

3 Пример дополнительного построения - высота, опущенная на гипотенузу. Вывод теоремы Пифагора на основе подобия треугольников.

Отсюда видно, что

1 Все прямоугольные треугольники с одинаковым острым углом - подобны. Взгляд на тригонометрические функции.

Треугольники со сторонами штрихованными и с не штрихованными подобны по равенству двух углов. Поэтому откуда

Это значит, что указанные отношения зависят лишь от острого угла прямоугольного треугольника и по сути определяют его. Это одно из оснований появления тригонометрических функций:

Часто запись тригонометрических функций угла в подобных прямоугольных треугольниках наглядней записи соотношений подобия!

2 Пример дополнительного построения - высота, опущенная на гипотенузу. Вывод теоремы Пифагора на основе подобия треугольников.

Опустим на гипотенузу AB высоту CH. Имеем три подобных треугольника ABC, AHC и CHB. Запишем выражения для тригонометрических функций:

Отсюда видно, что . Складывая, получаем теорему Пифагора, поскольку :

Другое доказательство теоремы Пифагора см.в комментарии к задаче 4.
3 Важный пример дополнительного построения – построение угла, равного одному из углов треугольника.

Проводим из вершины прямого угла отрезок прямой, составляющий с катетом CA угол, равный углу CAB заданного прямоугольного треугольника ABC. В результате получим равнобедренный треугольник ACM с углами при основании . Но другой треугольник, получающийся при таком построении, также будет равнобедренным, поскольку каждый его угол при основании равен (по свойству углов прямоугольного треугольника и по построению - из прямого угла «вычли» угол ). В силу того, что треугольники BMC и AMC равнобедренные с общей стороной MC имеем равенство MB=MA=MC, т.е. MC – медиана, проведенная к гипотенузе прямоугольного треугольника , и она равна половине гипотенузы .
Следствие 1. Середина гипотенузы является центром окружности, описанной вокруг этого треугольника, поскольку получилось, что середина гипотенузы равноудалена от вершин прямоугольного треугольника.
Следствие 2. Средняя линия прямоугольного треугольника, соединяющая середину гипотенузы и середину катета, параллельна противоположному катету и равна его половине.

Опустим в равнобедренных треугольниках BMC и AMC высоты MH и MG на основания. Поскольку в равнобедренном треугольнике, высота, опущенная на основание, является также и медианой (и биссектрисой), то MH и MG –линии прямоугольного треугольника, соединяющие середину гипотенузы с серединами катетов. По построению они оказываются параллельными противоположным катетам и равные их половинам, поскольку треугольники равны MHC и MGC равны (причем MHCG – прямоугольник). Этот результат является основанием для доказательства теоремы о средней линии произвольного треугольника и, далее, средней линии трапеции и свойства пропорциональности отрезков, отсекаемых параллельными прямыми на двух пересекающих их прямых.


Задачи
Использование свойств подобия -1
Использование основных свойств - 2
Использование дополнительного построения 3-4

1 2 3 4

Высота, опущенная из вершины прямого угла прямоугольного треугольника равна корню квадратном из длин отрезков, на которые она делит гипотенузу.

Решение представляется очевидным, если знать вывод теоремы Пифагора из подобия треугольников:

\(\mathrm{tg}\beta=\frac{h}{c_1}=\frac{c_2}{h}\),
откуда \(h^2=c_1c_2\).

Найти геометрическое место точек (ГМТ) пересечения медиан всевозможных прямоугольных треугольников, гипотенуза АВ которых зафиксирована.

Точка пересечения медиан любого треугольника отсекает от медианы одну треть, считая от точки ее пересечения с соответствующей стороной. В прямоугольном треугольнике медиана, проведенная из прямого угла, равна половине гипотенузы. Поэтому искомое ГМТ есть окружность радиуса, равной 1/6 от длины гипотенузы, с центром в середине этой (фиксированной) гипотенузы.

Порой темы, которые объясняют в школе, могут быть не всегда понятны с первого раза. Особенно это касается такого предмета, как математика. Но все становится намного сложнее, когда эта наука начинает подразделяться на две части: алгебру и геометрию.

Каждый ученик может обладать способностью к одному из двух направлений, но особенно в начальных классах важно понять базу и алгебры, и геометрии. В геометрии одной из главных тем принято считать раздел о треугольниках.

Как находить среднюю линию треугольника? Давайте разбираться.

Основные понятия

Для начала чтобы разобраться, как находить среднюю линию треугольника, важно понимать, что же это.

Для проведения средней линии нет ограничений: треугольник может быть любым (равнобедренным, равносторонним, прямоугольным). И все свойства, которые относятся к средней линии, будут действовать.

Средняя линия треугольника является отрезком, соединяющим середины 2-х его сторон. Следовательно, любой треугольник может иметь 3 таких линии.

Свойства

Чтобы знать, как находить среднюю линию треугольника, обозначим ее свойства, которые необходимо запомнить, иначе без них будет невозможным решение задач с необходимостью обозначить длину средней линии, поскольку все полученные данные необходимо обосновать и аргументировать теоремами, аксиомами или свойствами.

Таким образом, чтобы ответить на вопрос: «Как найти среднюю линию треугольника АВС?», достаточно знать одну из сторон треугольника.

Приведем пример

Взгляните на рисунок. На нем представлен треугольник ABC со средней линией DE. Обратим внимание, что она параллельна основанию AC в треугольнике. Следовательно, каким бы ни было значение AC, средняя линия DE будет в два раза меньше. К примеру, AC=20, значит DE=10 и т. д.

Вот такими несложными способами можно понять, как находить среднюю линию треугольника. Запомните ее основные свойства и определение, и тогда у вас никогда не возникнет проблем с нахождением ее значения.

Тема урока

Средняя линия треугольника

Цели урока

Закрепить знания школьников о треугольниках;
Познакомить учащихся с таким понятием, как средняя линия треугольника;
Сформировать знания учеников о свойствах треугольников;
Продолжать обучать детей применению свойств фигур при решении задач;
Развивать логическое мышление, усидчивость и внимание учеников.

Задачи урока

Формировать знания школьников о средней линии треугольников;
Проверить знания учащихся по пройденным темам о треугольниках;
Проверить умение учащихся решать задачи.
Развивать у школьников интерес к точным наукам;
Продолжать формировать умение учащихся излагать свои мысли и владеть математическим языком;

План урока

1. Средняя линия треугольника. Основные понятия.
2. Средняя линия треугольника, теоремы и свойства.
3. Повторение ранее изученного материала.
4. Основные линии треугольника и их свойства.
5. Интересные факты из области математики.
6. Домашнее задание.

Средняя линия треугольника

Средней линией треугольника называют такой отрезок, который соединяет середины двух сторон данного треугольника.

В каждом треугольнике есть три средние линии, которые образуют еще один новый треугольник, расположенный внутри.

Вершины вновь образованного треугольника находятся на срединах сторон данного треугольника.

В каждом треугольнике есть возможность провести три средние линии.

Теперь давайте более детально остановимся на этой теме. Посмотрите на рисунок треугольника вверху. Перед вами треугольник АВС, на котором проведении средние линии. Отрезки MN, MP и NP образуют внутри данного треугольника еще один треугольник MNP.

Свойства средней линии треугольника

Каждая средняя линия треугольника, соединяющая середины его сторон, обладает следующими свойствами:

1. Средняя линия треугольника параллельна его третей стороне и равна её половине.

Таким образом, мы видим, что сторона АС параллельна MN, которая в два раза меньше, чем сторона АС.



2. Средние линии треугольника делят его на четыре равных треугольника.

Если мы посмотрим на треугольник АВС, то увидим, что средние линии MN, MP и NP разделили его на четыре равных треугольника, и в итоге образовались треугольники MBN, PMN, NCP и AMP.

3. Средняя линия треугольника отсекает от данного треугольника подобный, площадь которого равняется одной четвертой исходного треугольника.

Так, например, в треугольнике АВС средняя линия MP отсекает от данного треугольника, образуя треугольник AMP, площадь которого равна одной четвертой треугольника АВС.

Треугольники

В предыдущих классах вы уже изучали такую геометрическую фигуру, как треугольник и знаете, какие бывают виды треугольников, чем они отличаются и какими свойствами обладают.

Треугольник относится к простейшим геометрическим фигурам, которые имеют три стороны, три угла и их площадь ограничена тремя точками и тремя отрезками, которые попарно соединяют эти точки.

Вот мы вспомнили определение треугольника, а сейчас давайте повторим все что вы знаете об этой фигуре, ответив на вопросы:

4. Какие виды треугольников вы уже изучили? Перечислите их.
5. Дайте определения каждому из видов треугольников.
6. Чему равна площадь треугольника?
7. Чему равна сумма углов этой геометрической фигуры?
8. Какие типы треугольников вам известны? Назовите их.
9. Какие вы знаете треугольники по типу равных сторон?
10. Дайте определение гипотенузы.
11. Сколько острых углов может быть в треугольнике?

Основные линии треугольника

К основным линиям треугольника относятся: медиана, биссектриса, высота и срединный перпендикуляр.

Медиана

Медианой треугольника называют отрезок, который соединяет вершину треугольника с серединой противолежащей стороны данного треугольника.

Свойства медиан треугольника

1. Она делит треугольник на два других, равных по площади;
2. Все медианы данной фигуры пересекаются в одной точке. Эта точка делит их в отношении два к одному, начиная отсчет от вершины, и называется центром тяжести треугольника;
3. Медианы разделяют данный треугольник на шесть равновеликих.

Биссектриса

Луч, который выходит из вершины и, проходя между сторонами угла, делит его пополам, называется биссектрисой этого угла.

А если отрезок биссектрисы угла соединяет его вершину с точкой, которая лежит на противолежащей стороне треугольника, то он называется биссектрисой треугольника.

Свойства биссектрис треугольника

1. Биссектрисой угла является геометрическое место точек, которые равноудалены от сторон данного угла.
2. Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, которые являются пропорциональными прилежащим сторонам треугольника.
3. Центром окружности, вписанной в треугольник, является точка пересечения биссектрис данной фигуры.

Высота

Перпендикуляр, который проведен с вершины к фигуры к прямой, которая является противоположной стороной треугольника, называется его высотой.

Свойства высот треугольника

1. Высота, проведенная из вершины прямого угла, делит треугольник на два подобных.
2. Если треугольник является остроугольным, то его две высоты отсекают от данного треугольника ему подобные.

Срединный перпендикуляр

Срединным перпендикуляром треугольника называют прямую, которая проходит через середину отрезка, который расположен перпендикулярно к этому отрезку.

Свойства серединных перпендикуляров треугольника

1. Любая точка серединного перпендикуляра к отрезку, равноудалена от его концов. В этом случае будет верно и обратное утверждение.
2. Точка пересечения серединных перпендикуляров, которые проведены к сторонам треугольника, есть центром окружности, которая описана около этого треугольника.

Интересные факты из области математики

Будет ли для вас новостью узнать, что за расшифровку секретной переписки правительства Испании, Франсуа Виета хотели отправить на костер, так как считали, что узнать шифр мог только дьявол, а человеку это не по силам.

Известно ли вам, что первым человеком, который предложил нумеровать кресла, ряды и места, был Рене Декарт? Аристократы-театралы даже просили короля Франции дать за это Декарту награду, но, увы, король отказал, так как считал, что давать награды философу – это ниже его достоинства.

Из-за учащихся, которые могли запомнить теорему Пифагора, но не смогли ее понять, эту теорему называли «ослиным мостом». Это значило, что ученик «осел», который не смог преодолеть мост. В данном случае мостом считали теорему Пифагора.

Писатели сказочники посвящали свои произведения не только мифическим героям, людям и зверюшкам, но и математическим символам. Так, например, автор знаменитой «Красной Шапочки», написал сказку о любви циркуля и линейки.

Домашнее задание

1. Перед вами изображены три треугольника, дайте ответ, являются ли проведенные в треугольниках линии средними?
2. Сколько средних линий можно построить в одном треугольнике?



3. Дан треугольник АВС. Найдите стороны треугольника АВС, если его средние линии имеют такие размеры: OF = 5,5 см, FN = 8 см, ON = 7 см.

\[{\Large{\text{Подобие треугольников}}}\]

Определения

Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого
(стороны называются сходственными, если они лежат напротив равных углов).

Коэффициент подобия (подобных) треугольников – это число, равное отношению сходственных сторон этих треугольников.

Определение

Периметр треугольника – это сумма длин всех его сторон.

Теорема

Отношение периметров двух подобных треугольников равно коэффициенту подобия.

Доказательство

Рассмотрим треугольники \(ABC\) и \(A_1B_1C_1\) со сторонами \(a,b,c\) и \(a_1, b_1, c_1\) соответственно (см. рисунок выше).

Тогда \(P_{ABC}=a+b+c=ka_1+kb_1+kc_1=k(a_1+b_1+c_1)=k\cdot P_{A_1B_1C_1}\)

Теорема

Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Доказательство

Пусть треугольники \(ABC\) и \(A_1B_1C_1\) подобны, причём \(\dfrac{AB}{A_1B_1} = \dfrac{AC}{A_1C_1} = \dfrac{BC}{B_1C_1} = k\) . Обозначим буквами \(S\) и \(S_1\) площади этих треугольников соответственно.


Так как \(\angle A = \angle A_1\) , то \(\dfrac{S}{S_1} = \dfrac{AB\cdot AC}{A_1B_1\cdot A_1C_1}\) (по теореме об отношении площадей треугольников, имеющих по равному углу).

Так как \(\dfrac{AB}{A_1B_1} = \dfrac{AC}{A_1C_1} = k\) , то \(\dfrac{S}{S_1} = \dfrac{AB}{A_1B_1}\cdot\dfrac{AC}{A_1C_1} = k\cdot k = k^2\) , что и требовалось доказать.

\[{\Large{\text{Признаки подобия треугольников}}}\]

Теорема (первый признак подобия треугольников)

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.

Доказательство

Пусть \(ABC\) и \(A_1B_1C_1\) – треугольники такие, что \(\angle A = \angle A_1\) , \(\angle B = \angle B_1\) . Тогда по теореме о сумме углов треугольника \(\angle C = 180^\circ - \angle A - \angle B = 180^\circ - \angle A_1 - \angle B_1 = \angle C_1\) , то есть углы треугольника \(ABC\) соответственно равны углам треугольника \(A_1B_1C_1\) .


Так как \(\angle A = \angle A_1\) и \(\angle B = \angle B_1\) , то \(\dfrac{S_{ABC}}{S_{A_1B_1C_1}} = \dfrac{AB\cdot AC}{A_1B_1\cdot A_1C_1}\) и \(\dfrac{S_{ABC}}{S_{A_1B_1C_1}} = \dfrac{AB\cdot BC}{A_1B_1\cdot B_1C_1}\) .

Из этих равенств следует, что \(\dfrac{AC}{A_1C_1} = \dfrac{BC}{B_1C_1}\) .

Аналогично доказывается, что \(\dfrac{AC}{A_1C_1} = \dfrac{AB}{A_1B_1}\) (используя равенства \(\angle B = \angle B_1\) , \(\angle C = \angle C_1\) ).

В итоге, стороны треугольника \(ABC\) пропорциональны сходственным сторонам треугольника \(A_1B_1C_1\) , что и требовалось доказать.

Теорема (второй признак подобия треугольников)

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

Доказательство

Рассмотрим два треугольника \(ABC\) и \(A"B"C"\) , таких что \(\dfrac{AB}{A"B"}=\dfrac{AC}{A"C"}\) , \(\angle BAC = \angle A"\) . Докажем, что треугольники \(ABC\) и \(A"B"C"\) – подобны. Учитывая первый признак подобия треугольников, достаточно показать, что \(\angle B = \angle B"\) .


Рассмотрим треугольник \(ABC""\) , у которого \(\angle 1 = \angle A"\) , \(\angle 2 = \angle B"\) . Треугольники \(ABC""\) и \(A"B"C"\) подобны по первому признаку подобия треугольников, тогда \(\dfrac{AB}{A"B"} = \dfrac{AC""}{A"C"}\) .

С другой стороны, по условию \(\dfrac{AB}{A"B"} = \dfrac{AC}{A"C"}\) . Из последних двух равенств следует, что \(AC = AC""\) .

Треугольники \(ABC\) и \(ABC""\) равны по двум сторонам и углу между ними, следовательно, \(\angle B = \angle 2 = \angle B"\) .

Теорема (третий признак подобия треугольников)

Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Доказательство

Пусть стороны треугольников \(ABC\) и \(A"B"C"\) пропорциональны: \(\dfrac{AB}{A"B"} = \dfrac{AC}{A"C"} = \dfrac{BC}{B"C"}\) . Докажем, что треугольники \(ABC\) и \(A"B"C"\) подобны.


Для этого, учитывая второй признак подобия треугольников, достаточно доказать, что \(\angle BAC = \angle A"\) .

Рассмотрим треугольник \(ABC""\) , у которого \(\angle 1 = \angle A"\) , \(\angle 2 = \angle B"\) .

Треугольники \(ABC""\) и \(A"B"C"\) подобны по первому признаку подобия треугольников, следовательно, \(\dfrac{AB}{A"B"} = \dfrac{BC""}{B"C"} = \dfrac{C""A}{C"A"}\) .

Из последней цепочки равенств и условия \(\dfrac{AB}{A"B"} = \dfrac{AC}{A"C"} = \dfrac{BC}{B"C"}\) вытекает, что \(BC = BC""\) , \(CA = C""A\) .

Треугольники \(ABC\) и \(ABC""\) равны по трем сторонам, следовательно, \(\angle BAC = \angle 1 = \angle A"\) .

\[{\Large{\text{Теорема Фалеса}}}\]

Теорема

Если на одной из сторон угла отметить равные между собой отрезки и через их концы провести параллельные прямые, то эти прямые отсекут на второй стороне также равные между собой отрезки.

Доказательство

Докажем сначала лемму: Если в \(\triangle OBB_1\) через середину \(A\) стороны \(OB\) проведена прямая \(a\parallel BB_1\) , то она пересечет сторону \(OB_1\) также в середине.

Через точку \(B_1\) проведем \(l\parallel OB\) . Пусть \(l\cap a=K\) . Тогда \(ABB_1K\) - параллелограмм, следовательно, \(B_1K=AB=OA\) и \(\angle A_1KB_1=\angle ABB_1=\angle OAA_1\) ; \(\angle AA_1O=\angle KA_1B_1\) как вертикальные. Значит, по второму признаку \(\triangle OAA_1=\triangle B_1KA_1 \Rightarrow OA_1=A_1B_1\) . Лемма доказана.

Перейдем к доказательству теоремы. Пусть \(OA=AB=BC\) , \(a\parallel b\parallel c\) и нужно доказать, что \(OA_1=A_1B_1=B_1C_1\) .

Таким образом, по данной лемме \(OA_1=A_1B_1\) . Докажем, что \(A_1B_1=B_1C_1\) . Проведем через точку \(B_1\) прямую \(d\parallel OC\) , причем пусть \(d\cap a=D_1, d\cap c=D_2\) . Тогда \(ABB_1D_1, BCD_2B_1\) - параллелограммы, следовательно, \(D_1B_1=AB=BC=B_1D_2\) . Таким образом, \(\angle A_1B_1D_1=\angle C_1B_1D_2\) как вертикальные, \(\angle A_1D_1B_1=\angle C_1D_2B_1\) как накрест лежащие, и, значит, по второму признаку \(\triangle A_1B_1D_1=\triangle C_1B_1D_2 \Rightarrow A_1B_1=B_1C_1\) .

Теорема Фалеса

Параллельные прямые отсекают на сторонах угла пропорциональные отрезки.

Доказательство

Пусть параллельные прямые \(p\parallel q\parallel r\parallel s\) разбили одну из прямых на отрезки \(a, b, c, d\) . Тогда вторую прямую эти прямые должны разбить на отрезки \(ka, kb, kc, kd\) соответственно, где \(k\) – некоторое число, тот самый коэффициент пропорциональности отрезков.

Проведем через точку \(A_1\) прямую \(p\parallel OD\) (\(ABB_2A_1\) - параллелограмм, следовательно, \(AB=A_1B_2\) ). Тогда \(\triangle OAA_1 \sim \triangle A_1B_1B_2\) по двум углам. Следовательно, \(\dfrac{OA}{A_1B_2}=\dfrac{OA_1}{A_1B_1} \Rightarrow A_1B_1=kb\) .

Аналогично проведем через \(B_1\) прямую \(q\parallel OD \Rightarrow \triangle OBB_1\sim \triangle B_1C_1C_2 \Rightarrow B_1C_1=kc\) и т.д.

\[{\Large{\text{Средняя линия треугольника}}}\]

Определение

Средняя линия треугольника – это отрезок, соединяющий середины любых двух сторон треугольника.

Теорема

Средняя линия треугольника параллельна третьей стороне и равна ее половине.

Доказательство

1) Параллельность средней линию основанию следует из доказанной выше леммы .

2) Докажем, что \(MN=\dfrac12 AC\) .

Через точку \(N\) проведем прямую параллельно \(AB\) . Пусть эта прямая пересекла сторону \(AC\) в точке \(K\) . Тогда \(AMNK\) - параллелограмм (\(AM\parallel NK, MN\parallel AK\) по предыдущему пункту). Значит, \(MN=AK\) .

Т.к. \(NK\parallel AB\) и \(N\) – середина \(BC\) , то по теореме Фалеса \(K\) – середина \(AC\) . Следовательно, \(MN=AK=KC=\dfrac12 AC\) .

Следствие

Средняя линия треугольника отсекает от него треугольник, подобный данному с коэффициентом \(\frac12\) .

Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Доказательство. Пусть А 1 , А 2 , А 3 - точки пересечения параллельных прямых с одной из сторон угла и А 2 лежит между А 1 и А 3 (рис.1).

Пусть B 1 В 2 , В 3 - соответствующие точки пересечения этих прямых с другой стороной угла. Докажем, что если А 1 А 2 = A 2 A 3 , то В 1 В 2 = В 2 В 3 .

Проведем через точку В 2 прямую EF, параллельную прямой А 1 А 3 . По свойству параллелограмма А 1 А 2 = FB 2 , A 2 A 3 = B 2 E .

И так как А 1 А 2 = A 2 A 3 , то FB 2 = В 2 Е.

Треугольники B 2 B 1 F и В 2 В 3 Е равны по второму признаку. У них B 2 F = В 2 Е по доказанному. Углы при вершине В 2 равны как вертикальные, а углы B 2 FB 1 и B 2 EB 3 равны как внутренние накрест лежащие при параллельных А 1 В 1 и A 3 B 3 и секущей EF. Из равенства треугольников следует равенство сторон: В 1 В 2 = В 2 В 3 . Теорема доказана.

С использованием теоремы Фалеса устанавливается следующая теорема.

Теорема 2. Средняя линия треугольника параллельна третьей стороне и равна ее половине.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. На рисунке 2 отрезок ED - средняя линия треугольника ABC.

ED - средняя линия треугольника ABC

Пример 1. Разделить данный отрезок на четыре равные части.

Решение. Пусть АВ - данный отрезок (рис.3), который надо разделить на 4 равные части.

Деление отрезка на четыре равные части

Для этого через точку А проведем произвольную полупрямую а и отложим на ней последовательно четыре равных между собой отрезка AC, CD, DE, ЕК.

Соединим точки В и К отрезком. Проведем через оставшиеся точки С, D, Е прямые, параллельные прямой ВК, так, чтобы они пересекли отрезок АВ.

Согласно теореме Фалеса отрезок АВ разделится на четыре равные части.

Пример 2. Диагональ прямоугольника равна а. Чему равен периметр четырехугольника, вершины которого являются серединами сторон прямоугольника?

Решение. Пусть условию задачи отвечает рисунок 4.

Тогда EF - средняя линия треугольника ABC и, значит, по теореме 2. $$ EF = \frac{1}{2}AC = \frac{a}{2} $$

Аналогично $$ HG = \frac{1}{2}AC = \frac{a}{2} , EH = \frac{1}{2}BD = \frac{a}{2} , FG = \frac{1}{2}BD = \frac{a}{2} $$ и, следовательно, периметр четырехугольника EFGH равен 2a.

Пример 3. Стороны треугольника равны 2 см, 3 см и 4 см, а вершины его - середины сторон другого треугольника. Найти периметр большого треугольника.

Решение. Пусть условию задачи отвечает рисунок 5.

Отрезки АВ, ВС, АС - средние линии треугольника DEF. Следовательно, согласно теореме 2 $$ AB = \frac{1}{2}EF\ \ ,\ \ BC = \frac{1}{2}DE\ \ ,\ \ AC = \frac{1}{2}DF $$ или $$ 2 = \frac{1}{2}EF\ \ ,\ \ 3 = \frac{1}{2}DE\ \ ,\ \ 4 = \frac{1}{2}DF $$ откуда $$ EF = 4\ \ ,\ \ DE = 6\ \ ,\ \ DF = 8 $$ и, значит, периметр треугольника DEF равен 18 см.

Пример 4. В прямоугольном треугольнике через середину его гипотенузы проведены прямые, параллельные его катетам. Найти периметр образовавшегося прямоугольника, если катеты треугольника равны 10 см и 8 см.

Решение. В треугольнике ABC (рис.6)

∠ А прямой, АВ = 10 см, АС = 8 см, KD и MD - средние линии треугольника ABC, откуда $$ KD = \frac{1}{2}AC = 4 см. \\ MD = \frac{1}{2}AB = 5 см. $$ Периметр прямоугольника К DMА равен 18 см.