Многоугольники. Подробная теория с примерами. Чему равна сумма углов выпуклого многоугольника Выпуклый многоугольник как сделать

В 8 классе на уроках геометрии в школе ученики впервые знакомятся с понятием выпуклого многоугольника. Очень скоро они узнают, что эта фигура обладает очень интересным свойством. Какой бы сложной она ни была, сумма всех внутренних и внешних углов выпуклого многоугольника принимает строго определенное значение. В данной статье репетитор по математике и физике рассказывает о том, чему равна сумма углов выпуклого многоугольника.

Сумма внутренних углов выпуклого многоугольника

Как доказать эту формулу?

Прежде чем перейти к доказательству этого утверждения, вспомним, какой многоугольник называется выпуклым. Выпуклым называется такой многоугольник, который целиком находится по одну сторону от прямой, содержащей любую его сторону. Например такой, который изображен на этом рисунке:

Если же многоугольник не удовлетворяет указанному условию, то он называется невыпуклым. Например, такой:

Сумма внутренних углов выпуклого многоугольника равна , где — количество сторон многоугольника.

Доказательство этого факта основано на хорошо известной всем школьникам теореме о сумме углов в треугольнике. Уверен, что и вам эта теорема знакома. Сумма внутренних углов треугольника равна .

Идея состоит в том, чтобы разбить выпуклый многоугольник на несколько треугольников. Сделать это можно разными способами. В зависимости от того, какой способ мы выберем, доказательства будут немного отличаться.

1. Разобьём выпуклый многоугольник на треугольники всеми возможными диагоналями, проведёнными из какой-нибудь вершины. Легко понять, что тогда наш n-угольник разобьётся на треугольника:

Причём сумма всех углов всех получившихся треугольников равна сумме углов нашего n-угольника. Ведь каждый угол в получившихся треугольниках является частичной какого-то угла в нашем выпуклом многоугольнике. То есть искомая сумма равна .

2. Можно также выбрать точку внутри выпуклого многоугольника и соединить её со всеми вершинами. Тогда наш n-угольник разобьется на треугольников:

Причём сумма углов нашего многоугольника в этом случае будет равна сумме всех углов всех этих треугольников за вычетом центрального угла, который равен . То есть искомая сумма опять же равна .

Сумма внешних углов выпуклого многоугольника

Зададимся теперь вопросом: «Чему равна сумма внешних углов выпуклого многоугольника?» Ответить на этот вопрос можно следующим образом. Каждый внешний угол является смежным с соответствующим внутренним. Поэтому он равен :

Тогда сумма всех внешних углов равна . То есть она равна .

То есть получается весьма забавный результат. Если отложить последовательно друг за другом все внешние углы любого выпуклого n-угольника, то в результате заполнится ровно вся плоскости.

Этот интересный факт можно проиллюстрировать следующим образом. Давайте пропорциональном уменьшать все стороны какого-нибудь выпуклого многоугольника до тех пор, пока он не сольётся в точку. После того, как это произойдёт, все внешние углы окажутся отложенными один от другого и заполнят таким образом всю плоскость.

Интересный факт, не правда ли? И таких фактов в геометрии очень много. Так что учите геометрию, дорогие школьники!

Материал о том, чему равна сумма углов выпуклого многоугольника, подготовил , Сергей Валерьевич

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Выпуклое множество точек на плоскости.

Множество точек на плоскости или в трехмерном пространстве называется выпуклым , если любые две точки этого множества можно соединить отрезком прямой, полностью лежащим в данном множестве.

Теорема 1 . Пересечение конечного числа выпуклых множеств является выпуклым множеством.

Следствие. Пересечение конечного числа выпуклых множеств – выпуклое множество.

Угловые точки.

Граничная точка выпуклого множества называется угловой , если через нее можно провести отрезок, все точки которого не принадлежат данному множеству.

Различные по форме множества могут иметь конечное или бесконечное количество угловых точек.

Выпуклый многоугольник.

Многоугольник называется выпуклым , если он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины.

Теорема: Сумма углов выпуклого n-угольника равна 180˚ *(n-2)

6) Решение систем m линейных неравенств с двумя переменными

Дана система т линейных неравенств с двумя переменными

Знаки некоторых или всех неравенств могут быть ≥.

Рассмотрим первое неравенство в системе координат Х1ОХ2. Построим прямую

которая является граничной прямой.

Эта прямая делит плоскость на две полуплоскости 1 и 2 (рис. 19.4).

Полуплоскость 1 содержит начало координат, полуплоскость 2 не содержит начала координат.

Для определения, по какую сторону от граничной прямой расположена заданная полуплоскость, надо взять произвольную точку на плоскости (лучше начало координат) и подставить координаты этой точки в неравенство. Если неравенство справедливо, то полуплоскость обращена в сторону этой точки, если не справедливо, то в противоположную от точки сторону.

Направление полуплоскости на рисунках показываем стрелкой.

Определение 15. Решением каждого неравенства системы является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее.

Определение 16. Пересечение полуплоскостей, каждая из которых определяется соответствующим неравенством системы, называется областью решения системы (ОР).

Определение 17. Область решения системы, удовлетворяющая условиям неотрицательности (xj ≥ 0, j =), называется областью неотрицательных, или допустимых, решений (ОДР).

Если система неравенств совместна, то ОР и ОДР могут быть многогранником, неограниченной многогранной областью или одной точкой.

Если система неравенств несовместна, то ОР и ОДР - пустое множество.

Пример 1. Найти ОР и ОДР системы неравенств и определить координаты угловых точек ОДР

Решение. Найдем ОР первого неравенства: х1 + 3x2 ≥ 3. Построим граничную прямую х1 +3x2 – 3 = 0 (рис. 19.5). Подставим координаты точки (0,0) в неравенство: 1∙0 + 3∙0 > 3; так как координаты точки (0,0) не удовлетворяют ему, то решением неравенства (19.1) является полуплоскость, не содержащая точку (0,0).


Аналогично найдем решения остальных неравенств системы. Получим, что ОР и ОДР системы неравенств является выпуклый многогранник ABCD.

Найдем угловые точки многогранника. Точку А определим как точку пересечения прямых

Решая систему, получим А(3/7, 6/7).

Точку В найдем как точку пересечения прямых

Из системы получим B(5/3, 10/3). Аналогично найдем координаты точек С и D: С(11/4; 9/14), D(3/10; 21/10).

Пример 2. Найти ОР и ОДР системы неравенств

Решение. Построим прямые и определим решения неравенств (19.5)-(19.7). ОР и ОДР являются неограниченные многогранные области ACFM и ABDEKM соответственно (рис. 19.6).

Пример 3. Найти ОР и ОДР системы неравенств

Решение. Найдем решения неравенств (19.8)-(19.10) (рис. 19.7). ОР представляет неограниченную многогранную область ABC; ОДР - точка В.

Пример 4. Найти OP и ОДР системы неравенств

Решение. Построив прямые, найдем решения неравенств системы. ОР и ОДР несовместны (рис. 19.8).

УПРАЖНЕНИЯ

Найти ОР и ОДР систем неравенств

Теорема. Если xn ® a, то .

Доказательство. Из xn ® a следует, что . В то же время:

Т.е. , т.е. . Теорема доказана.

Теорема. Если xn ® a, то последовательность {xn} ограничена.

Следует отметить, что обратное утверждение неверно, т.е. из ограниченности последовательности не следует ее сходимость.

Например, последовательность не имеет предела, хотя

Разложение функций в степенные ряды.

Разложение функций в степенной ряд имеет большое значение для решения различных задач исследования функций, дифференцирования, интегрирования, решения дифференциальных уравнений, вычисления пределов, вычисления приближенных значений функции.

Итого, получаем:

Рассмотрим способ разложения функции в ряд при помощи интегрирования.

С помощью интегрирования можно разлагать в ряд такую функцию, для которой известно или может быть легко найдено разложение в ряд ее производной.

Находим дифференциал функции и интегрируем его в пределах от 0 до х.

Определение выпуклости многоугольника.

Алгоритм Кируса–Бэка предполагает наличие выпуклого многоугольника, используемого в качестве окна.

Однако на практике весьма часто возникает задача отсечения многоугольником, а информация о том, является он выпуклым или нет изначально не задается. В таком случае, прежде чем начать процедуру отсечения необходимо определить какой задан многоугольник – выпуклый или нет.

Дадим некотрые определения выпуклости многоугольника

Выпуклым считается многоугольник, для которого выполняется одно из ниже перечисленных условий:

1)в выпуклом многоугольнике все вершины располагаются по одну сторону от линии, несущей любое ребро (по внутреннюю сторону относительно данного ребра);

2)все внутренние углы многоугольника меньше 180 о;

3)все диагонали, связывающие вершины многоугольника, лежат внутри этого многоугольника;

4)все углы многоугольника обходятся в одном направлении (Рис. 3.3‑1).

Для выработки аналитического представление последнего критерия выпуклости, используем векторное произведение.

Векторное произведение W двух векторов a и b (Рис. 3.3‑2 а) определяется как:


A x ,a y ,a z и b x ,b y ,b z являются проекциями на оси координат X ,Y ,Z , соответственно, векторов – сомножителей a и b ,

- i , j , k – единичные векторы по координатным осям X , Y , Z .



Рис. 3.3 1



Рис. 3.3 2

Если рассматривать двумерное представление многоугольника как представление его в координатной плоскости XY трехмерной системе координат X ,Y ,Z (Рис. 3.3‑2 b ), то выражение для формирования векторного произведения векторов U и V , где векторы U и V являются соседними ребрами, образующими угол многоугольника, можно записать в виде определитель:

Вектор векторного произведения перпендикулярен плоскости, в которой находятся вектора-сомножители. Направление вектора произведения определяется по правилу буравчика или по правилу винта с правой нарезкой.

Для случая, представленного на Рис. 3.3‑2 b ), вектор W , соответствующий векторному произведению векторов V , U , будет иметь ту же направленность, что и направленность координатной оси Z .

Учитывая то, что проекции на ось Z векторов –сомножителей в этом случае равны нулю, векторное произведение можно представить в виде:


(3.3-1)

Единичный вектор k всегда положительный, следовательно, знак вектора w векторного произведения будет определяться только знаком определителя D в выше приведенном выражении. Отметим, что на основании свойства векторного произведения, при перестановке местами векторов-сомножителей U и V знак вектора w будет меняться на противоположный.

Отсюда следует, что, если в качестве векторов V и U рассматривать два соседних ребра многоугольника, то порядок перечисления векторов в векторном произведении можно поставить в соответствие c обходом рассматриваемого угла многоугольника или ребер, образующих этот угол. Это позволяет использовать в качестве критерия определения выпуклости многоугольника правило:

если для всех пар ребер многоугольника выполняется условие:



Если знаки векторных произведений для отдельных углов не совпадают, то многоугольник не выпуклый.

Так как ребра многоугольник задаются в виде координат их концевых точек, то для определения знака векторного произведения удобнее использовать определитель.

Плоская фигура, образованная замкнутым рядом прямолинейных отрезков, называется многоугольником. На рис.1 изображен шестиугольник ABCDEF . Точки А , В , С , D , Е , F - вершины многоугольника ; при них (углы многоугольника) обозначаются ∠A , ∠В , ∠С , …, ∠F . Отрезки: AC , AD , BE и т.д. - диагонали , АВ ; ВС , CD и т. д. - стороны многоугольника ; сумма длин сторон АВ + ВС + CD + … + FA называется периметром и обозначается р , а иногда (тогда р - полупериметр ).

В элементарной геометрии рассматриваются только простые многоугольники, т. е. такие, контур которых не имеет самопересечений.

Многоугольники, контур которых имеет самопересечения, называются звездчатыми многоугольниками . На рис.2 изображен звездчатый многоугольник ABCDE .

рис.2

Если все диагонали многоугольника лежат внутри него, многоугольник называется выпуклым .

Шестиугольник на рис.1 выпуклый; пятиугольник на рис.3 невыпуклый (диагональ ЕС лежит вне многоугольника).

рис.3

Сумма внутренних углов во всяком выпуклом многоугольнике равна 180° (n-2 ), где n - число сторон многоугольника*.

* В учебниках геометрии это свойство высказывается обычно только для выпуклых многоугольников. Но оно справедливо для всех простых многоугольников. Но оно справедливо для всех простых многоугольников. Нужно заметить, что в невыпуклом многоугольнике один или несколько внутренних углов превышают 180°. Так, в невыпуклом пятиугольнике, изображенном на рис.3, два угла прямые, два угла имеют по 45°, а один содержит 270°. Суммаа углов составляет 180° (5-2)=540°.