Большой адронный коллайдер на карте. Зачем нужен адронный коллайдер? Амбициозный проект человечества

Большой адронный коллайдер (БАК) был запущен 10 сентября 2008 года. Через девять дней в крупнейшем на планете ускорителе элементарных частиц произошла авария, и ученые вынуждены были прекратить работу на нем. Непосредственно перед запуском БАК и спустя некоторое время после поломки в СМИ появлялось огромное количество новостей о коллайдере, но постепенно информационный поток иссяк. Что сейчас происходит с БАК и вокруг него?

Фальстарт

Запуска БАК с нетерпением ждали не только физики, но и люди, которые последний раз вспоминали об этой науке в школе. Такое нетипичное внимание к исследованиям старательно поддерживалось журналистами, в том числе и далекими от науки. Кроме того, важную роль в "раскрутке" коллайдера сыграли работающие на нем специалисты, что является нетипичным для ученых поведением.

После проведения столь активной рекламной кампании специалисты БАК не могли обмануть ожидания миллионов жителей Земли и отложить запуск ускорителя. Знаменательное событие было намечено на 10 сентября 2008 года, однако незадолго до этого срока ученые столкнулись с рядом технических проблем. В назначенный день первые пучки протонов прошли по 27-километровому кольцу ускорителя. Исследователи прогнали протоны , перевыполнив намеченную ранее программу.

Следующие несколько дней ученые радовались, что созданная ими колоссальная установка работает как надо (хотя небольшие технические затруднения периодически возникали), а обыватели - что . Но 19 сентября около полудня ситуация вышла из-под контроля. Около сотни магнитов коллайдера вышли из сверхпроводящего состояния, которое возможно при температуре ниже 1,9 кельвина (-271,3 градуса Цельсия). Магниты начали нагреваться, и когда температура достигла 100 кельвинов, в туннель ускорителя было выброшено около шести тонн жидкого гелия из криогенной системы, поддерживающей магнит в сверхпроводящем состоянии.

Вышедшие из строя магниты относятся к так называемым поворотным магнитам. Они необходимы для того, чтобы удерживать пучки протонов на правильной траектории. В магнитную систему БАК также входят фокусирующие магниты, которые препятствуют "разбеганию" положительно заряженных протонов из-за электростатического отталкивания. Магниты специального назначения, установленные в двух точках - там, где протоны попадают в ускорительное кольцо и выходят из него, - контролируют пучок только во время его инжекции и сброса.

Сразу после аварии стало ясно, что коллайдер получил серьезные повреждения, однако точная оценка причиненного ущерба заняла длительное время. Туннель ускорителя находится на глубине 100 метров, и в нем поддерживается стабильно низкая температура. Для того чтобы понять, что и почему произошло 19 сентября, ученым необходимо было прогреть поврежденную секцию до комнатной температуры, а затем частично разобрать конструкции БАК.

В итоговом заключении технической комиссии CERN (Европейский центр ядерных исследований, международная организация, курирующая проект БАК), выпущенном 5 декабря 2008 года, был сделан вывод, что причиной аварии стал брак при монтаже одного из контактов между магнитами. Размер причиненного ущерба был . На ремонтные работы планировалось потратить половину этой суммы, а оставшиеся 10 миллионов должны были пойти на покупку новых магнитов.

Чуть позже генеральный директор CERN Рольф-Дитер Хойер объявил, что починка БАК обойдется почти на треть дороже. Согласно новым подсчетам, ориентировочная стоимость работ . Выросла и предполагаемая длительность ремонта. Изначально представители CERN говорили , затем срок . В настоящее время ученые обещают начать пробные пуски протонов - октябре 2009 года.

Помимо собственно замены или ремонта поврежденных магнитов специалисты CERN разработали диагностическую систему, которая способна выявлять повреждения, способные спровоцировать новую аварию. С помощью этой системы уже были обнаружены несколько дефектных соединений в других секторах ускорительного кольца. В начале мая ученые выяснили, что некоторые контакты могут содержать дефекты несколько иного типа. Часть из них было решено заменить на новые.

Средства на устранение последствий аварии должны были предоставить страны-участники CERN. Дополнительные расходы и сами по себе не являются приятным событием, а тут еще грянул финансовый кризис. Выделение средств не на спасение экономики, а на непонятный прибор со сложным названием показалось разумной идеей не всем государствам.

В начале мая 2009 года Австрия заявила о своем . По мнению официальных лиц, правительство смогло бы с большей пользой для страны потратить 17 миллионов, которые ежегодно уходят в бюджет CERN. Австрийские ученые восприняли решение правительства крайне негативно, и 18 мая канцлер страны объявил о том, что Австрия .

Не только БАК

Несмотря на то что на ремонт БАК уходит огромное количество ресурсов, CERN продолжает поддерживать и другие научные проекты. С 10 по 13 мая в Центре прошла конференция, посвященная их обсуждению. Для проведения большей части экспериментов ученые задействуют "разгоночные" ускорительные кольца БАК (перед тем как попасть в 27-километровый туннель, протоны набирают скорость в меньших по размеру кольцах). Программу конференции и ссылки на тексты докладов можно найти .

Том Хэнкс в роли профессора Лэнгдона. Кадр из фильма "Ангелы и демоны"

Параллельно с чисто научной деятельностью CERN продолжает активно вести просветительскую работу. Одновременно с премьерой фильма Рона Говарда был запущен сайт , на котором разъясняется суть упоминающихся в картине научных явлений. По сюжету главные герои пытаются спасти Ватикан, который злоумышленники хотят разрушить при помощи созданной в CERN . Частично на сайте воспроизводится опубликованная ранее об антивеществе, но некоторые разделы сайта, посвященные экспериментам на БАК и бозону Хиггса, являются новыми.

Научную основу картины, снятой по мотивам одноименного романа Дэна Брауна, нельзя назвать безукоризненной. Тем не менее, представители CERN активно сотрудничают со съемочной группой и используют фильм для рекламы коллайдера. Во время визита в CERN в феврале исполнитель главной роли Том Хэнкс дал согласие в церемонии повторного запуска БАК.

Еще одной категорией граждан (помимо любителей кино), которых CERN пытается приобщить к экспериментам БАК, стали дети. В конце марта 2009 года в Сети появилась "Цернландия" - сайт, на котором можно совершить путешествие в мультяшный БАК. Выполняя различные квесты, посетители сайта узнают названия и суть проводимых на коллайдере экспериментов и назначение различных установок БАК.

Что дальше?

Технические неполадки, возникшие в коллайдере, являются серьезными (учитывая размеры БАК - очень серьезными). Для их устранения специалистам CERN придется приложить огромное количество усилий, и не исключено, что в ходе проверок будут обнаружены новые дефекты. На данный момент трудно сказать, смогут ли ученые получить финансирование в достаточном объеме для того, чтобы вновь попытаться уничтожить Землю и провести грандиозный эксперимент. Тем не менее, исследователи не теряют оптимизма, а научная жизнь в CERN продолжает развиваться. А это самое главное.


В этом году ученые планируют воспроизвести в ядерной лаборатории те далекие первозданные условия, когда еще не было протонов и нейтронов, а существовала сплошная кварк-глюонная плазма. Иными словами, исследователи надеются увидеть мир элементарных частиц в том виде, каким он был всего через доли микросекунд после Большого взрыва, то есть после образования Вселенной. Программа называется «Как все началось». Кроме того, уже более 30 лет в научном мире выстраиваются теории, объясняющие наличие массы у элементарных частиц. Одна из них предполагает существование бозона Хиггса. Эту элементарную частицу называют еще божественной. Как сказал один из сотрудников ЦЕРН, «поймав следы Хиггс-бозона, я приду к собственной бабушке и скажу: посмотри-ка, пожалуйста, - из-за этой маленькой штучки у тебя столько лишних килограммов». Но экспериментально существование бозона пока не подтверждено: все надежды - на ускоритель LHC.

Большой адронный коллайдер – ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ.

Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение. Откуда они возникают, одинаковой ли природы их происхождение и, если да, то какова она?
Сегодня мы имеем ответы на вопросы, позволяющие гораздо лучше понять происхождение Вселенной. Однако в самом начале XXI века перед нами стоят новые вопросы, ответы на которые ученые надеются получить с помощью ускорителя БАК. И кто знает, развитие каких новых областей человеческих знаний повлекут за собой предстоящие исследования. А пока же наши знания о Вселенной недостаточны.

Комментирует член-корреспондент РАН из Института физики высоких энергий Сергей Денисов:
- В этом коллайдере участвует много российских физиков, которые связывают определенные надежды с открытиями, которые могут там произойти. Основное событие, которое может случиться – это открытие так называемой гипотетической частицы Хиггса (Питер Хиггс — выдающийся шотландский физик.). Роль этой частицы чрезвычайно важна. Она ответственна за образование массы других элементарных частиц. Если такую частицу откроют, то это будет величайшим открытием. Оно подтвердило бы так называемую Стандартную модель, которая сейчас широко используется для описания всех процессов в микромире. Пока эта частица не будет открыта, эту модель нельзя считать полностью обоснованной и подтвержденной. Это, конечно, самое первое, чего ученые ожидают от этого коллайдера (LHC).
Хотя, вообще говоря, никто не считает эту Стандартную модель истиной в последней инстанции. И, скорее всего, по мнению большинства теоретиков, она является приближением или, иногда говорят, «низкоэнергетическим приближением» к более Общей теории, которая описывает мир на расстояниях в миллион раз меньших, чем размер ядер. Это примерно как теория Ньютона является «низкоэнергетическим приближением» к теории Эйнштейна – теории относительности. Вторая важная задача, связанная с коллайдером – это попытаться перейти за пределы этой самой Стандартной модели, то есть совершить переход к новым пространственно-временным интервалам.

Физики смогут понять, в каком направлении надо двигаться, чтобы построить более красивую и более Общую теорию физики, которая будет эквивалентна таким малым пространственно-временным интервалам. Те процессы, которые там изучаются, воспроизводят по сути процесс образования Вселенной, как говорят, «в момент Большого Взрыва». Конечно, это для тех, кто верит в эту теорию о том, что Вселенная создавалась таким образом: взрыв, затем процессы при супервысоких энергиях. Оговариваемое путешествие во времени может оказаться связанным с этим Большим Взрывом.
Как бы там ни было, БАК – это достаточно серьезное продвижение в глубь микромира. Поэтому могут открыться совершенно неожиданные вещи. Скажу одно, что на БАКе могут быть открыты совершенно новые свойства пространства и времени. В каком направлении они будут открыты – сейчас сказать трудно. Главное – прорываться дальше и дальше.

Справка

Европейская организация ядерных исследований (ЦЕРН) — крупнейший в мире научно-исследовательский центр в области физики частиц. К настоящему времени число стран-участниц выросло до 20. Около 7000 ученых, представляющих 500 научных центров и университетов, пользуются экспериментальным оборудованием ЦЕРН. Кстати, в работе над Большим адронным коллайдером принимал непосредственное участие и российский Институт ядерной физики СО РАН. Наши специалисты сейчас заняты монтажом и тестированием оборудования, которое разработано и произведено в России для этого ускорителя. Ожидается, что Большой адронный коллайдер будет запущен в мае 2008 года. Как выразился Лин Эванс, глава проекта, ускорителю не хватает лишь одной детали – большой красной кнопки.

Сроки повторного запуска БАКа из‑за выявления на нем новых неполадок уже несколько раз переносились . В частности, в середине июля 2009 года на коллайдере были обнаружены нарушения герметичности и утечки в системе охлаждения в секторах 8‑1 и 2‑3, из‑за чего запуск коллайдера был вновь отложен.

Как объявил ЦЕРН, пучки протонов вновь начнут циркулировать по 27‑километровому кольцу в середине ноября, а столкновения частиц начнутся несколько недель спустя.

Специалисты ЦЕРНа намерены сперва провести столкновения на энергии предыдущей ступени ускорителя ‑ 450 гигаэлектронвольт на пучок, и только затем доведут энергию до половины проектной ‑ до 3,5 тераэлектронвольт на пучок.

Однако физики отмечают, что и на этой энергии цель создания коллайдера ‑ обнаружение бозона Хиггса , частицы, отвечающей за массу всех других элементарных частиц, ‑ может быть достигнута.

БАК будет работать в этом режиме до конца 2010 года, после чего он будет остановлен для подготовки к переходу к энергии в 7 тераэлектронвольт на пучок.

В мае 2009 года в мировой прокат вышел приключенческий фильм "Ангелы и демоны" по мотивам одноименной книги Дэна Брауна.

ЦЕРН играет ключевую роль в сюжете этого произведения, и несколько эпизодов фильма были отсняты на территории ЦЕРНа. Поскольку в фильме присутствуют элементы вымысла, в том числе и при описании того, что и как изучается в ЦЕРНе, руководство ЦЕРНа сочло полезным предупредить те вопросы, которые неизбежно возникнут у многих зрителей фильма. С этой целью был запущен специальный вебсайт Angels and Demons ‑ the science behind the story. На нём в доступной форме рассказывается о тех физических явлениях, которые вплетены в сюжет фильма (прежде всего ‑ это получение, хранение и свойства антиматерии).

Развитие сюжета начинается с двух, казалось бы, не связанных между собой, но, тем не менее, ключевых для фильма событий: смерть действующего Папы Римского, и завершение экспериментов с Большим адронным коллайдером. В результате испытаний ученые получают антивещество, которое по силе действия может сравниться с самым мощным оружием. Тайное общество Иллюминатов решает воспользоваться этим изобретением в собственных целях - уничтожить Ватикан, центр мирового католицизма, который сейчас как раз остался без главы.

Материал подготовлен на основе информации РИА Новости и открытых источников

Где находится большой адронный коллайдер?

В 2008 году CERN (Европейский совет ядерных исследований) завершил строительство сверхмощного ускорителя частиц, названного Большой адронный коллайдер. По-английски: LHC – Large Hadron Collider. CERN – международная межправительственная научная организация, образованная в 1955 году. По сути, это главная лаборатория мира в областях высоких энергий, физики частиц и солнечной энергетики . Членами организации являются порядка 20 стран.

Зачем нужен большой адронный коллайдер?

В окрестностях Женевы в 27-километровом (26 659 м) круговом бетонном тоннеле создано кольцо сверхпроводящих магнитов для разгона протонов. Предполагается, что ускоритель поможет не только проникнуть в тайны микроструктуры материи, но и позволит продвинуться в поисках ответа на вопрос о новых источниках энергии в глубине материи.

С этой целью одновременно со строительством самого ускорителя (стоимостью свыше 2 млрд долларов) созданы четыре детектора частиц. Из них два больших универсальных (CMS и ATLAS) и два – более специализированных. Общая стоимость детекторов приближается также к 2 млрд долларов. В каждом из больших проектов CMS и ATLAS приняли участие свыше 150 институтов из 50 стран, в том числе российских и белорусских.

Охота за неуловимым бозоном Хиггса

Как работает адронный коллайдер ускоритель? Коллайдер – это крупнейший ускоритель протонов, работающий на встречных пучках. В результате ускорения каждый из пучков будет иметь энергию в лабораторной системе 7 тераэлектрон-вольт (ТэВ), то есть 7x1012 электрон-вольт. При столкновении протонов образуется множество новых частиц, которые будут регистрироваться детекторами. После анализа вторичных частиц полученные данные помогут ответить на фундаментальные вопросы, волнующие ученых, занимающихся физикой микромира и астрофизикой. В числе главных вопросов – экспериментальное обнаружение бозона Хиггса.

Ставший «знаменитым» бозон Хиггса – гипотетическая частица, являющаяся одним из главных компонентов так называемой стандартной, классической модели элементарных частиц. Назван по имени британского теоретика Питера Хиггса, предсказавшего его существование в 1964 году. Считается, что хиггсовские бозоны, будучи квантами поля Хиггса, имеют отношение к фундаментальным вопросам физики. В частности – к концепции происхождения масс элементарных частиц.

2-4 июля 2012 ряд экспериментов на коллайдере выявили некую частицу, которую можно соотнести с бозоном Хиггса. Причем, данные подтвердились при измерении и системой ATLAS, и системой CMS. До сих пор идут споры, действительно ли открыт пресловутый бозон Хиггса, или это другая частица. Факт в том, что обнаруженный бозон – самый тяжелый из ранее фиксировавшихся. Для решения фундаментального вопроса были приглашены ведущие физики мира: Джеральд Гуральник, Карл Хаген, Франсуа Энглер и сам Питер Хиггс, теоретически обосновавший в далеком 1964 году существование бозона, названного в его честь. После анализа массива данных, участники исследования склонны считать, что бозон Хиггса действительно обнаружен.

Многие физики надеялись, что при исследовании бозона Хиггса выявятся «аномалии», которые заставили бы говорить о так называемой «Новой физике». Однако к концу 2014 года обработан почти весь массив данных, накопленный за три предыдущих года в результате экспериментов на БАК, и интригующих отклонений (за исключением отдельных случаев) не выявлено. На поверку оказалось, что двухфотонный распад пресловутого бозона Хиггса оказался, по словам исследователей, «слишком стандартным». Впрочем, намеченные на весну 2015 года эксперименты могут удивить научный мир новыми открытиями.

Не бозоном единым

Поиск бозона Хиггса – не самоцель гигантского проекта. Для ученых также важен поиск новых видов частиц, позволяющих судить о едином взаимодействии природы на ранней стадии существования Вселенной. Сейчас ученые различают четыре фундаментальных взаимодействия природы: сильное, электромагнитное, слабое и гравитационное. Теория предполагает, что на начальной стадии Вселенной, возможно, существовало единое взаимодействие. Если новые частицы будут открыты, то подтвердится эта версия.

Физиков также волнует вопрос о загадочном происхождении массы частиц. Почему частицы вообще имеют массу? И почему они имеют такие массы, а не другие? Попутно здесь всегда имеется в виду формула Е =mc ². В любом материальном объекте есть энергия. Вопрос в том, как ее высвободить. Как создать такие технологии, которые позволили бы высвобождать ее из вещества с максимальным коэффициентом полезного действия? На сегодня это основной вопрос энергетики.

Иными словами, проект Большого адронного коллайдера поможет ученым найти ответы на фундаментальные вопросы и расширить знания о микромире и, таким образом, – о происхождении и развитии Вселенной.

Вклад белорусских и российских ученых и инженеров в создание БАК

На этапе строительства европейские партнеры из CERN обратились к группе белорусских ученых, имеющих серьезные наработки в этой области, принять участие в создании детекторов для LHC с самого начала проекта. В свою очередь, белорусские ученые пригласили к сотрудничеству коллег Объединенного института ядерных исследований из наукограда Дубна и других российских институтов. Специалисты единой командой приступили к работе над так называемым детектором CMS – «Компактным мюонным соленоидом». Он состоит из многих сложнейших подсистем, каждая из которых сконструирована так, чтобы выполнялись специфические задачи, при этом совместно они обеспечивают идентификацию и точное измерение энергий и углов вылета всех частиц, рождающихся в момент протонных столкновений в БАК.

Белорусско-российские специалисты также участвовали в создании детектора ATLAS. Это установка высотой 20 м, способная измерить траектории частиц с высокой точностью: до 0,01 мм. Чувствительные датчики внутри детектора содержат около 10 млрд транзисторов. Приоритетная цель эксперимента ATLAS состоит в обнаружении бозона Хиггса, изучении его свойств.

Без преувеличения, наши ученые внесли существенный вклад в создание детекторов CMS и ATLAS. Некоторые важные компоненты были изготовлены на минском Машиностроительном заводе им. Октябрьской революции (МЗОР). В частности – торцевые адронные калориметры для эксперимента CMS. Кроме того, завод произвел весьма сложные элементы магнитной системы детектора ATLAS. Это крупногабаритные изделия, требующие владения специальными технологиями обработки металлов и сверхточной обработки. По оценке техников CERN, заказы были выполнены блестяще.

Нельзя недооценивать и «вклад личностей в историю». Например, инженер кандидат технических наук Роман Стефанович ответственен в проекте CMS за сверхточную механику. В шутку даже говорят, что без него CMS не был бы собран. Но если серьезно, то можно вполне определенно утверждать: без него сроки сборки и наладки при требуемом качестве не были бы выдержаны. Другой наш инженер-электронщик Владимир Чеховский, пройдя достаточно сложный конкурс, сегодня отлаживает электронику детектора CMS и его мюонных камер.

Наши ученые участвуют как в запуске детекторов, так и в лабораторной части, в их эксплуатации, поддержании и обновлении. Ученые из Дубны и их белорусские коллеги полноправно занимают свои места в международном физическом сообществе CERN, которое трудится ради получения новой информации о глубинных свойствах и строении материи.

Видео

Обзор от канала Простая наука, наглядно показывающий принцип действия ускорителя:

Обзор от уанала Галилео:

Адронный коллайдер запуск 2015: