Построить 4 замечательные точки. Исследовательский проект замечательные точки треугольника. Точка пересечения серединных перпендикуляров треугольника

© Кугушева Наталья Львовна, 2009 Геометрия, 8 класс ТРЕУГОЛЬНИКА ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ

Точка пересечения медиан треугольника Точка пересечения биссектрис треугольника Точка пересечения высот треугольника Точка пересечения серединных перпендикуляров треугольника

Медианой (BD) треугольника называется отрезок, который соединяет вершину треугольника с серединой противолежащей стороны. А В С D Медиана

Медианы треугольника пересекаются в одной точке (центре тяжести треугольника) и делятся этой точкой в отношении 2: 1, считая от вершины. АМ: МА 1 = ВМ: МВ 1 = СМ:МС 1 = 2:1. А А 1 В В 1 М С С 1

Биссектрисой (А D) треугольника называется отрезок биссектрисы внутреннего угла треугольника.

Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон. Обратно: каждая точка, лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе. А М В С

Все биссектрисы треугольника пересекаются в одной точке– центре вписанной в треугольник окружности. С В 1 М А В А 1 С 1 О Радиус окружности (ОМ) – перпендикуляр, опущенный из центра (т.О) на сторону треугольника

ВЫСОТА Высотой (С D) треугольника называется отрезок перпендикуляра, опущенного из вершины треугольника на прямую, содержащую противолежащую сторону. A B C D

Высоты треугольника (или их продолжения) пересекаются в одной точке. А А 1 В В 1 С С 1

СЕРЕДИННЫЙ ПЕРПЕНДИКУЛЯР Серединным перпендикуляром (DF) называется прямая, перпендикулярная стороне треугольника и делящая её пополам. А D F B C

А М В m O Каждая точка серединного перпендикуляра (m) к отрезку равноудалена от концов этого отрезка. Обратно: каждая точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к нему.

Все серединные перпендикуляры сторон треугольника пересекаются в одной точке– центре описанной около треугольника окружности. А В С О Радиусом описанной окружности является расстояние от центра окружности до любой вершины треугольника (ОА). m n p

Задания для учащихся Постройте с помощью циркуля и линейки окружность, вписанную в тупоугольный треугольник. Для этого: Постройте биссектрисы в тупоугольном треугольнике с помощью циркуля и линейки. Точка пересечения биссектрис– центр окружности. Постройте радиус окружности: перпендикуляр из центра окружности на сторону треугольника. Постройте окружность, вписанную в треугольник.

2. Постройте с помощью циркуля и линейки окружность, описанную около тупоугольного треугольника. Для этого: Постройте серединные перпендикуляры к сторонам тупоугольного треугольника. Точка пересечения этих перпендикуляров– центр описанной окружности. Радиус окружности– расстояние от центра до любой вершины треугольника. Постройте окружность, описанную около треугольника.

Сильченков Илья

материалы к уроку, презентация с анимацией

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон и равна половине этой стороны. Так же по теореме средняя линия треугольника параллельна одной из его сторон и равна половине это стороны.

Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой

Замечательных точки треугольника

Замечательные точки треугольника Точка пересечения медиан (центроид треугольника) ; Точка пересечения биссектрис, центр вписанной окружности; Точка пересечения серединных перпендикуляров; Точка пересечения высот (ортоцентр); Прямая Эйлера и окружность девяти точек; Точки Жергонна и Нагеля; Точка Ферма-Торричелли;

Точка пересечения медиан

Медиана треугольника- отрезок, соединяющий вершину любого угла треугольника с серединой противоположной стороны.

I. Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.

Доказательство:

A B C A 1 C 1 B 1 1 2 3 4 0 1. Обозначим буквой О точку пересечения двух медиан АА 1 и В В1 треугольника АВС и проведём среднюю линию А 1 В 1 этого треугольника. 2.Отрезок А 1 В 1 параллелен стороне АВ и 1/2 АВ = А 1 В 1 т. е. АВ = 2А1В1 (по теореме о средней линии треугольника), поэтому 1= 4 и 3= 2 (т.к. они внутренние накрест лежащие углы при параллельных прямых AB и A 1 B 1 и секущей BB 1 для 1, 4 и AA 1 для 3, 2 3.Следовательно, треугольники АОВ и А 1 ОВ 1 подобны по двум углам, и, значит их стороны пропорциональны, т. е. равны отношения сторон АО и А 1 О, ВО и В 1 О, АВ и А 1 В 1 . Но АВ = 2А 1 В 1 , поэтому АО=2А 1 О и ВО=2В 1 О. Таким образом, точка О пересечения медиан ВВ 1 и АА 1 делит каждую из них в отношении 2:1 , считая от вершины. Теорема доказана. Аналогично можно доказать и про другие две медианы

Центр масс иногда называют центроидом. Именно поэтому говорят, что точка пересечения медиан- центроид треугольника. В этой же точке располагается и центр масс однородной треугольной пластинки. Если подобную пластинку поставить на булавку так, чтобы остриё булавки попало точно в центроид треугольника, то пластинка будет находиться в равновесии. Также точка пересечения медиан является центром вписанной окружности его серединного треугольника. Интересное свойство точки пересечения медиан связано с физическим понятием центра масс. Оказывается, если поместить в вершины треугольника равные массы, то их центр попадёт именно в эту точку.

Точка пересечения биссектрис

Биссектриса треугольника - отрезок биссектрисы угла, соединяющий вершину одного из углов треугольника с точкой лежащей на противоположной стороне.

Биссектрисы треугольника пересекаются в одной точке, равноудаленной от его сторон.

Доказательство:

С А В А 1 В 1 С 1 0 1. Обозначим буквой О точку пересечения биссектрис АА 1 и ВВ 1 треугольника АВС. 3.Воспользуемся тем, что каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон и обратно: каждая точка, лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе. Тогда ОК=OL и ОК=ОМ. А значит ОМ=OL , т. е. точка О равноудалена от сторон треугольника АВС и, значит, лежит на биссектрисе СС1 угла C . 4.Следовательво, все три биссектрисы треугольника АВС пересекаются в точке О. K L M Теорема доказана. 2.проведём из этой точки перпендикуляры ОК, OL и ОМ соответственно к прямым АВ, ВС и СА.

Точка пересечения серединных перпендикуляров

Серединный перпендикуляр- прямая, проходящая через середину данного отрезка и перпендикулярная к нему.

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, равноудаленной от вершин треугольника.

Доказательство:

В С A m n 1. Обозначим буквой О точку пересечения серединных перпендикуляров т и п к сторонам АВ и ВС треугольника АВС. O 2. Воспользовавшись теоремой о том, что каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка и обратно: каждая точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к нему, получим, что ОВ=ОА и ОВ=ОС. 3. Поэтому ОА=ОС, т. е. точка О равноудалена от концов отрезка АС и, значит, лежит на серединном перпендикуляре к этому отрезку. 4. Следовательно, все три серединных перпендикуляра m, n и p к сторонам треугольника АВС пересекаются в точке О. Теорема доказана. р

Точка пересечения высот (или их продолжений)

Высота треугольника- перпендикуляр, проведенный из вершины любого угла треугольника к прямой, содержащей противоположную сторону.

Высоты треугольника или их продолжения пересекаются в одной точке, которая может лежать в треугольнике, а может находиться за его пределами.

Доказательство:

Докажем, что прямые АА 1 , ВВ 1 и СС 1 пересекаются в одной точке. В A C C2 C1 A1 A2 В 1 В 2 1. Проведём через каждую вершину треугольника АВС прямую, параллельную противоположной стороне. Получим треугольник А 2 В 2 С 2 . 2. Точки А, В и С являются серединами сторон этого треугольника. Действительно, АВ=А 2 С и АВ=СВ 2 как противоположные стороны параллелограммов АВА 2 С и АВСВ 2 , поэтому А 2 С=СВ 2 . Аналогично С 2 А=АВ 2 и С 2 В=ВА 2 . Кроме того, как следует из построения, СС 1 перпендикулярен А 2 В 2 , АА 1 перпендикулярен В 2 С 2 и ВВ 1 перпендикулярен А 2 С 2 (из следствия по теореме параллельных прямых и секущей) . Таким об p азом, прямые АА 1 , ВВ 1 и СС 1 являются серединными перпендикулярами к сторонам треугольника А 2 В 2 С 2 . Следовательно, они пересекаются в одной точке. Теорема доказана.

Докажем сначала теорему о биссектрисе угла.

Теорема

Доказательство

1) Возьмём произвольную точку М на биссектрисе угла ВАС, проведём перпендикуляры МК и ML к прямым АВ и АС и докажем, что MK = ML (рис. 224). Рассмотрим прямоугольные треугольники AM К и AML. Они равны по гипотенузе и острому углу (AM - общая гипотенуза, ∠1 = ∠2 по условию). Следовательно, MK = ML.

2) Пусть точка М лежит внутри угла ВАС и равноудалена от его сторон АВ и АС. Докажем, что луч AM - биссектриса угла ВАС (см. рис. 224). Проведём перпендикуляры МК и ML к прямым АВ и АС. Прямоугольные треугольники АМК и AML равны по гипотенузе и катету (AM - общая гипотенуза, МК = ML по условию). Следовательно, ∠1 = ∠2. Но это и означает, что луч AM - биссектриса угла ВАС. Теорема доказана.


Рис. 224

Следствие 1

Следствие 2

В самом деле, обозначим буквой О точку пересечения биссектрис АА 1 и ВВ 1 треугольника АВС и проведём из этой точки перпендикуляры OK, OL и ОМ соответственно к прямым АВ, ВС и СА (рис. 225). По доказанной теореме ОК = ОМ и OK = OL. Поэтому ОМ = OL, т. е. точка О равноудалена от сторон угла АСВ и, значит, лежит на биссектрисе СС 1 этого угла. Следовательно, все три биссектрисы треугольника АВС пересекаются в точке О, что и требовалось доказать.


Рис. 225

Свойства серединного перпендикуляра к отрезку

Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярная к нему.


Рис. 226

Докажем теорему о серединном перпендикуляре к отрезку.

Теорема

Доказательство

Пусть прямая m - серединный перпендикуляр к отрезку АВ, точка О - середина этого отрезка (рис. 227, а).


Рис. 227

1) Рассмотрим произвольную точку М прямой m и докажем, что AM = ВМ. Если точка M совпадает с точкой О, то это равенство верно, так как О - середина отрезка АВ. Пусть M и О различные точки. Прямоугольные треугольники ОAM и ОВМ равны по двум катетам (ОА = ОВ, ОМ - общий катет), поэтому AM = ВМ.

2) Рассмотрим произвольную точку N, равноудалённую от концов отрезка АВ, и докажем, что точка N лежит на прямой m. Если N - точка прямой АВ, то она совпадает с серединой О отрезка АВ и потому лежит на прямой m. Если же точка N не лежит на прямой АВ, то треугольник ANB равнобедренный, так как AN = BN (рис. 227, б). Отрезок NO - медиана этого треугольника, а значит, и высота. Таким образом, NO ⊥ АВ, поэтому прямые ON и m совпадают, т. е. N - точка прямой m. Теорема доказана.

Следствие 1

Следствие 2

Для доказательства этого утверждения рассмотрим серединные перпендикуляры m и n к сторонам АВ и ВС треугольника АВС (рис. 228). Эти прямые пересекаются в некоторой точке О. В самом деле, если предположить противное, т. е. что m || n, то прямая ВА, будучи перпендикулярной к прямой m, была бы перпендикулярна и к параллельной ей прямой n, а тогда через точку В проходили бы две прямые ВА и ВС, перпендикулярные к прямой n, что невозможно.


Рис. 228

По доказанной теореме ОВ = ОА и ОВ = ОС. Поэтому ОА = ОС, т. е. точка О равноудалена от концов отрезка АС и, значит, лежит на серединном перпендикуляре р к этому отрезку. Следовательно, все три серединных перпендикуляра m, n и р к сторонам треугольника АВС пересекаются в точке О.

Теорема о пересечении высот треугольника

Мы доказали, что биссектрисы треугольника пересекаются в одной точке, серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Ранее было доказано, что медианы треугольника пересекаются в одной точке (п. 64). Оказывается, аналогичным свойством обладают и высоты треугольника.

Теорема

Доказательство

Рассмотрим произвольный треугольник АВС и докажем, что прямые АА 1 ВВ 1 и СС 1 содержащие его высоты, пересекаются в одной точке (рис. 229).


Рис. 229

Проведём через каждую вершину треугольника АВС прямую, параллельную противоположной стороне. Получим треугольник А 2 В 2 С 2 . Точки А, В и С являются серединами сторон этого треугольника. Действительно, АВ = А 2 С и АВ = СВ 2 как противоположные стороны параллелограммов АВА 2 С и АВСВ 2 , поэтому А 2 С = СВ 2 . Аналогично С 2 А = АВ 2 и С 2 В = ВА 2 . Кроме того, как следует из построения, СС 1 ⊥ А 2 В 2 , АА 1 ⊥ В 2 С 2 и ВВ 1 ⊥ А 2 С 2 . Таким образом, прямые АА 1 , ВВ 1 и СС 1 являются серединными перпендикулярами к сторонам треугольника А 2 В 2 С 2 . Следовательно, оНи пересекаются в одной точке. Теорема доказана.

Итак, с каждым треугольником связаны четыре точки: точка пересечения медиан, точка пересечения биссектрис, точка пересечения серединных перпендикуляров к сторонам и точка пересечения высот (или их продолжений). Эти четыре точки называются замечательными точками треугольника .

Задачи

674. Из точки М биссектрисы неразвёрнутого угла О проведены перпендикуляры МА и МВ к сторонам этого угла. Докажите, что АВ ⊥ ОМ.

675. Стороны угла О касаются каждой из двух окружностей, имеющих общую касательную в точке А. Докажите, что центры этих окружностей лежат на прямой О А.

676. Стороны угла А касаются окружности с центром О радиуса r. Найдите: а) ОА, если r = 5 см, ∠A = 60°; б) г, если ОА = 14 дм, ∠A = 90°.

677. Биссектрисы внешних углов при вершинах В и С треугольника АВС пересекаются в точке О. Докажите, что точка О является центром окружности, касающейся прямых АВ, ВС, АС.

678. Биссектрисы АА 1 и ВВ 1 треугольника АВС пересекаются в точке М. Найдите углы ACM и ВСМ, если: a) ∠AMB = 136°; б) ∠AMB = 111°.

679. Серединный перпендикуляр к стороне ВС треугольника АВС пересекает сторону АС в точке D. Найдите: a) AD и CD, если BD = 5 см, Ас = 8,5см; б) АС, если BD = 11,4 см, AD = 3,2 см.

680. Серединные перпендикуляры к сторонам АВ и АС треугольника АВС пересекаются в точке D стороны ВС. Докажите, что: а) точка D - середина стороны ВС; б) ∠A - ∠B + ∠C.

681. Серединный перпендикуляр к стороне АВ равнобедренного треугольника АВС пересекает сторону ВС в точке Е. Найдите основание АС, если периметр треугольника АЕС равен 27 см, а АВ = 18 см.

682. Равнобедренные треугольники АВС и ABD имеют общее основание АВ. Докажите, что прямая CD проходит через середину отрезка АВ.

683. Докажите, что если в треугольнике АВС стороны АВ и АС не равны, то медиана AM треугольника не является высотой.

684. Биссектрисы углов при основании АВ равнобедренного треугольника АВС пересекаются в точке М. Докажите, что прямая СМ перпендикулярна к прямой АВ.

685. Высоты АА 1 и ВВ 1 равнобедренного треугольника АВС, проведённые к боковым сторонам, пересекаются в точке М. Докажите, что прямая МС - серединный перпендикуляр к отрезку АВ.

686. Постройте серединный перпендикуляр к данному отрезку.

Решение

Пусть АВ - данный отрезок. Построим две окружности с центрами в точках А и В радиуса АВ (рис. 230). Эти окружности пересекаются в двух точках М 1 и М 2 . Отрезки АМ 1 , AM 2 , ВМ 1 , ВМ 2 равны друг другу как радиусы этих окружностей.


Рис. 230

Проведём прямую М 1 М 2 . Она является искомым серединным перпендикуляром к отрезку АВ. В самом деле, точки М 1 и М 2 равноудалены от концов отрезка АВ, поэтому они лежат на серединном перпендикуляре к этому отрезку. Значит, прямая М 1 М 2 и есть серединный перпендикуляр к отрезку АВ.

687. Даны прямая а и две точки А и В, лежащие по одну сторону от этой прямой. На прямой а постройте точку М, равноудалённую от точек А к В.

688. Даны угол и отрезок. Постройте точку, лежащую внутри данного угла, равноудалённую от его сторон и равноудалённую от концов данного отрезка.

Ответы к задачам

    674. Указание. Сначала доказать, что треугольник АОВ равнобедренный.

    676. а) 10 см; б) 7√2 дм.

    678. а) 46° и 46°; б) 21° и 21°.

    679. a) АВ = 3,5 см, CD = 5 см; б) АС = 14,6 см.

    683. Указание. Воспользоваться методом доказательства от противного.

    687. Указание. Воспользоваться теоремой п. 75.

    688. Указание. Учесть, что искомая точка лежит на биссектрисе данного угла.

1 То есть равноудалена от прямых, содержащих стороны угла.

Цели:
- обобщить знания учащихся потеме «Четыре замечательные точки треугольника», продолжить работу по формированию навыков построения высоты, медианы, биссектрисы треугольника;

Познакомить учащихся с новыми понятиями вписанной окружности в треугольник и описанной около него;

Развивать навыкиисследования;
- воспитывать настойчивость, точность, организованностьучащихся.
Задача: расширить познавательный интерес к предметугеометрия.
Оборудование: доска, чертёжные инструменты, цветные карандаши, модель треугольника на альбомном листе; компьютер, мультимедийный проектор, экран.

Ход урока

1. Организационный момент (1 минута)
Учитель: На этом уроке каждый из вас почувствует себя в роли инженера-исследователя, после окончания практической работы вы сможете оценить себя. Чтобы работа была успешна, надо очень точно и организовано выполнять все действия с моделью в ходе урока. Желаю успеха.
2.
Учитель: начертите в тетради неразвёрнутый угол
В. Какие вы знаете способы построения биссектрисы угла?

Определение биссектрисы угла. Два ученика выполняют на доскепостроение биссектрисы угла (по заранее заготовленным моделям) двумя способами: линейкой, циркулем. Следующие два ученика устнодоказывают утверждения:
1. Каким свойством обладают точки биссектрисы угла?
2. Что можно сказать о точках, лежащих внутри угла иравноудалённых от сторон угла?
Учитель: начертите в тетрадиостроугольный треугольник АВС и любым из способов, постройте биссектрисы угла А и угла С, точка их

пересечения - точка О. Какую гипотезу можете выдвинуть о луче ВО? Докажите, что луч ВО - биссектриса треугольника АВС. Сформулируйте вывод о расположении всех биссектрис треугольника.
3. Работа с моделью треугольника (5-7 минут).
1 вариант - остроугольный треугольник;
2 вариант - прямоугольный треугольник;
3 вариант - тупоугольный треугольник.
Учитель: на модели треугольника постройте две биссектрисы, обведите их жёлтым цветом. Обозначьте точку пересечения

биссектрис точкой К.Смотреть слайд № 1.
4. Подготовка к основному этапу урока (10-13 минут).
Учитель: начертите в тетради отрезок АВ. С помощью каких инструментов можно построить серединный перпендикуляр к отрезку? Определение серединного перпендикуляра. Два ученика выполняют на доскепостроение серединного перпендикуляра

(по заранее заготовленным моделям) двумя способами: линейкой, циркулем. Следующие два ученика устно доказывают утверждения:
1. Каким свойством обладают точки серединногоперпендикуляра к отрезку?
2. Что можно сказать о точках равноудалённых от концовотрезка АВ?Учитель: начертите в тетрадипрямоугольный треугольник АВС и постройте серединные перпендикуляры к двум любым сторонам треугольника АВС.

Обозначьте точку пересечения О. Проведите перпендикуляр к третьей стороне через точку О. Что вы заметили? Докажите, что это серединный перпендикуляр к отрезку.
5. Работа смоделью треугольника (5 минут).Учитель: на модели треугольникапостройте серединные перпендикуляры к двум сторонам треугольника и обведите их зелёным цветом. Обозначьте точку пересечения серединных перпендикуляров точкой О. Смотреть слайд № 2.

6. Подготовка к основному этапуурока (5-7 минут).Учитель: начертите тупоугольныйтреугольник АВС и постройте две высоты. Обозначьте их точку пересечения О.
1. Что можно сказать о третьей высоте (третья высота,если её продолжить за основание, будет проходить через точку О)?

2. Как доказать, что все высоты пересекаются в однойточке?
3. Какую новую фигуру образуют эти высоты и чем они в нейявляются?
7. Работа с моделью треугольника (5 минут).
Учитель: на модели треугольника постройте три высоты и обведите их синим цветом. Обозначьте точку пересечения высот точкой Н. Смотреть слайд № 3.

Урок второй

8. Подготовка к основному этапу урока (10-12 минут).
Учитель: начертите остроугольный треугольник АВС и постройте все его медианы. Обозначьте их точку пересечения О. Какимсвойством обладают медианы треугольника?

9. Работа с моделью треугольника (5минут).
Учитель: на модели треугольника постройте три медианы и обведите их коричневым цветом.

Обозначьте точку пересечения медиан точкой Т.Смотретьслайд № 4.
10. Проверка правильности построения (10-15 минут).
1. Что можно сказать о точке К? / ТочкаК-точка пересечения биссектрис, она равноудалена от всех сторон треугольника/
2. Покажите на модели расстояние от точки К долюбой стороны треугольника. Какую фигуру вы начертили? Как расположен этот

отрезок к стороне? Выделите жирно простым карандашом. (Смотреть слайд № 5).
3. Чем является точка, равноудалённаяот трёх точек плоскости, не лежащих на одной прямой? Постройте жёлтым карандашом окружность с центром К и радиусом, равным выделенному простым карандашом расстоянию. (Смотреть слайд № 6).
4. Что вы заметили? Как расположена этаокружность относительно треугольника? Вы вписали окружность в треугольник. Как можно назвать такую окружность?

Учитель даёт определение вписанной окружности в треугольник.
5. Что можно сказать о точке О? \ТочкаО -точка пересечения серединных перпендикуляров и она равноудалена от всех вершин треугольника \. Какую фигуру можно построить, связав точки А,В,С и О?
6. Постройте зелёным цветомокружность(О; ОА). (Смотреть слайд № 7).
7. Что вы заметили? Как расположена этаокружность относительно треугольника? Как можно назвать такую окружность? Как в таком случае можно назвать треугольник?

Учитель даёт определение описанной окружности около треугольника.
8. Приложите к точкам О,Н и Т линейку ипроведите красным цветом прямую через эти точки. Эта прямая называется прямой

Эйлера.(Смотреть слайд № 8).
9. Сравните ОТ и ТН. Проверьте ОТ:ТН=1: 2. (Смотреть слайд № 9).
10. а) Найдитемедианы треугольника (коричневым цветом). Отметьте чернилами основания медиан.

Где находятся эти три точки?
б) Найдитевысоты треугольника (синим цветом). Отметьте чернилами основания высот. Сколько этих точек? \ 1 вариант-3; 2 вариант-2; 3 вариант-3\.в) Измерьтерасстояния от вершин до точки пересечения высот. Назовите эти расстояния (АН,

ВН, СН). Найдите середины этих отрезков и выделите чернилами. Сколько таких

точек? \1 вариант-3; 2 вариант-2; 3 вариант-3\.
11. Посчитайте, сколько получилосьточек, отмеченных чернилами? \ 1 вариант - 9; 2 вариант-5; 3 вариант-9\. Обозначьте

точки D 1 , D 2 ,…, D 9 . (Смотреть слайд № 10).Через этиточки можно построить окружность Эйлера. Центр окружности точка Е находится в середине отрезка ОН. Строим красным цветом окружность (Е; ЕD 1). Эта окружность, как и прямая,названа именем великого учёного. (Смотреть слайд № 11).
11. Презентация об Эйлере (5 минут).
12. Итог (3 минуты).Оценка:«5»- если получились точно жёлтая, зелёная и краснаяокружности и прямая Эйлера. «4»-если неточно получились окружности на 2-3мм. «3»- если неточно получились окружности на 5-7мм.

Урок геометрии в 8-м классе разработан на основе модели позиционного обучения.

Цели урока:

  • Изучение теоретического материала по теме «Четыре замечательные точки треугольника»;
  • Развитие мышления, логики, речи, воображения обучающихся, умения анализировать и оценивать работу;
  • Развитие умения групповой работы;
  • Воспитание чувства ответственности за качество и результат выполняемой работы.

Оборудование:

  • карточки с названиями групп;
  • карточки с заданиями для каждой группы;
  • бумага формата А-4 для записи результатов работы групп;
  • эпиграф, записанный на доске.

Ход урока

1. Организационный момент.

2. Определение целей и темы урока.

Исторически геометрия началась с треугольника, поэтому вот уже два с половиной тысячелетия треугольник является символом геометрии. Школьная геометрия только тогда может стать интересной и содержательной, только тогда может стать собственно геометрией, когда в ней появляется глубокое и всестороннее изучение треугольника. Удивительно, но треугольник, несмотря на свою кажущуюся простоту, является неисчерпаемым объектом изучения – никто даже в наше время не осмелится сказать, что изучил и знает все свойства треугольника.

Кто не слышал о Бермудском треугольнике, в котором бесследно исчезают корабли и самолёты? А ведь сам треугольник таит в себе немало интересного и загадочного.

Центральное место треугольника занимают так называемые замечательные точки.

Думаю, что в конце урока вы сможете сказать: почему точки называются замечательными и являются ли они такими.

Какова тема нашего урока? «Четыре замечательные точки треугольника». Эпиграфом к уроку могут служить слова К. Вейерштрасса: «Математик, который не является отчасти поэтом, никогда не достигнет совершенства в математике» (эпиграф написан на доске).

Посмотрите на формулировку темы урока, на эпиграф и попробуйте определить цели вашей работы на уроке. В конце урока мы проверим, насколько вы их выполнили.

3. Самостоятельная работа обучающихся.

Подготовка к самостоятельной работе

Для работы на уроке вы должны выбрать себе одну из шести групп: «Теоретики», «Творчество», «Логики-конструкторы», «Практики», «Историки», «Эксперты».

Инструктаж

Каждая группа получает карточки с заданиями. Если задание непонятно, учитель дополнительно делает пояснения.

«Теоретики»

Задание: дайте определение основным понятиям, необходимым при изучении темы «Четыре замечательные точки треугольника» (высота треугольника, медиана треугольника, биссектриса треугольника, серединный перпендикуляр, вписанная окружность, описанная окружность), можно воспользоваться учебником; напишите основные понятия на листе бумаги.

«Историки»

биссектрисы центре вписанного круга перпендикуляры центре описанного круга . В «Началах» не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром медиан центром тяжести

В 20-х годах XIX в. французские математики Ж. Понселе, Ш. Брианшон и другие установили независимо друг от друга следующую теорему: основания медиан, основания высот и середин отрезков высот, соединяющих ортоцентр с вершинами треугольника, лежат на одной и той же окружности.

Эта окружность называется «окружностью девяти точек», или «окружностью Фейербаха», или «окружностью Эйлера». К. Фейербах установил, что центр этой окружности лежит на «прямой Эйлера».

Задание: проанализируйте статью и заполните таблицу, отражающую изученный материал.

Название точки

Что пересекается

«Творчество»

Задание: придумать синквэйн(ы) по теме «Четыре замечательные точки треугольника» (например, треугольник, точка, медиана и др.)

Правило написания синквэйна:

В первой строчке тема называется одним словом (обычно существительным).

Вторая строчка – это описание темы в двух словах (2 прилагательных).

Третья строчка – это описание действия в рамках этой темы тремя словами (глаголы, деепричастия).

Четвёртая строчка – это фраза из 4 слов, показывающая отношение к теме.

Проследняя строчка – это синоним (метафора) из одного слова, который повторяет суть темы.

«Логики-конструкторы»

Медианой треугольника называется отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Любой треугольник имеет три медианы.

Биссектрисой называется отрезок биссектрисы любого угла от вершины до пересечения с противоположной стороной. Любой треугольник имеет три биссектрисы.

Высотой треугольника называется перпендикуляр, опущенный из любой вершины треугольника на противоположную сторону или на её продолжение. Любой треугольник имеет три высоты.

Серединный перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярно к нему. Любой треугольник имеет три серединных перпендикуляра.

Задание: Используя треугольные листы бумаги, построить сгибанием точки пересечения медиан, высот, биссектрис, серединных перпендикуляров. Объяснить это всему классу.

«Практики»

В четвёртой книге «Начал» Евклид решает задачу «Вписать круг в данный треугольник». Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанного круга . Из решения другой задачи Евклида вытекает, что перпендикуляры , восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке – центре описанного круга . В «Началах» не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово «ортос» означает прямой, правильный). Это предложение было, однако, известно Архимеду, Паппу, Проклу. Четвёртой особенной точкой треугольника является точка пересечения медиан . Архимед доказал, что она является центром тяжести (барицентром) треугольника. На вышеназванные четыре точки было обращено особое внимание, начиная с XVIII в. Они были названы «замечательными» или «особенными точками треугольника».

Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – «геометрии треугольника», или «новой геометрии треугольника», одним из родоначальников которой был Леонард Эйлер.

Задание: проанализируйте предложенный материал и придумайте схему, отражающую смысловые связи между единицами, поясните её, нарисуйте на листе бумаги, оформите на доске.

Замечательные точки треугольника

1.____________ 2.___________ 3.______________ 4.____________

Чертёж 1 Чертёж 2 Чертёж 3 Чертёж 4

____________ ___________ ______________ ____________

(пояснение)

«Эксперты»

Задание: составьте таблицу, в которой вы оцените работу каждой группы, выберите параметры, по которым вы будете оценивать работу групп, определите баллы.

Параметры могут быть такими: участие каждого обучающегося в работе своей группы, участие в защите, интересное изложение материала, представлена наглядность и т.д.

В своём выступлении вы должны отметить позитивные и негативные моменты в деятельности каждой группы.

4. Выступление групп. (по 2-3 минуты)

Результаты работы вывешиваются на доске

5. Подведение итогов урока.

Посмотрите на цели, сформулированные вами в начале урока. Всё ли удалось вам выполнить?

Согласны ли вы с эпиграфом, который был выбран к сегодняшнему уроку?

6. Задание на дом.

1) Добейтесь того, чтобы треугольник, который опирается на остриё иглы в определённой точке, находился в равновесии, используя материал сегодняшнего урока.

2) Начертите в различных треугольниках все 4 замечательные точки.