Интерференция, Когорентные волны. Дифракция света, поляризация света. Светоизлучающие диоды. Лазерные диоды. Интерференция поляризованных лучей. Эллиптическая поляризация Как осуществить интерференцию поляризованных лучей

В природе мы можем наблюдать такое физическое явление, как интерференция поляризации света. Для наблюдения интерференции поляризованных лучей требуется выделение из обоих лучей компонентов с равными направлениями колебаний.

Сущность интерференции

Для большинства разновидностей волн актуальным будет принцип суперпозиции, который заключается в том, что при встрече в одной точке пространства между ними начинается процесс взаимодействия. Обмен энергией при этом будет отображаться на изменении амплитуды. Закон взаимодействия сформулирован на таких принципах:

  1. При условии встречи в одной точке двух максимумов, происходит двукратное увеличение в конечной волне интенсивности максимума.
  2. Если встретились минимум с максимумом, конечная амплитуда становится нулевой. Таким образом, интерференция превращается в эффект наложения.

Все описанное выше относилось к встрече двух равнозначных волн в рамках линейного пространства. Но две встречные волны могут быть разночастотными, разноамплитудными и иметь разную длину. Чтобы представить итоговую картину необходимо осознать, что результат окажется не совсем напоминающим волну. Другими словами, в этом случае нарушится строго соблюдаемый порядок чередования максимумов и минимумов.

Так, в один момент амплитуда окажется в своем максимуме, а в другой – станет уже намного меньше, далее возможны встреча минимума с максимумом и ее нулевое значение. Однако, несмотря на явление сильных различий двух волн, амплитуда однозначно повторится.

Замечание 1

Бывает и такая ситуация, что в одной точке наблюдается встреча фотонов разной поляризации. В подобном случае также следует учесть векторную составляющую у электромагнитных колебаний. Так, в случае их не взаимной перпендикулярности или присутствия у одного из пучков света круговой (эллиптической поляризации), взаимодействие станет вполне возможным.

На подобном принципе построено несколько способов установления оптической чистоты кристаллов. Так, в перпендикулярно поляризованных пучках должно отсутствовать какое-либо взаимодействие. Искажение картины свидетельствует о факте неидеальности кристалла (он изменил поляризацию пучков, соответственно, был выращен неправильным образом).

Интерференция поляризованных лучей

Интерференцию поляризованных лучей мы наблюдаем в момент прохождения линейно поляризованного света (полученного в процессе пропускания через поляризатор естественного света) сквозь кристаллическую пластинку. Луч в такой ситуации делится на два луча, поляризованных во взаимно перпендикулярных плоскостях.

Замечание 2

Максимальный контраст интерференционной картины фиксируется в условиях сложения колебаний одного типа поляризации (линейной, эллиптической или круговой) и совпадающих азимутов. Ортогональные колебания при этом не будут интерферировать.

Таким образом, сложение двух взаимно перпендикулярных и линейно поляризованных колебаний провоцирует возникновение эллиптически поляризованного колебания, чья интенсивность равнозначна сумме интенсивностей исходных колебаний.

Применение явления интерференции

Интерференция света может широко применяться в физике с различными целями:

  • для измерения длины излучаемой волны и изучения тончайшей структуры спектральной линии;
  • для определения показателей плотности, преломления и дисперсионных свойств вещества;
  • с целью контроля качества оптических систем.

Интерференция поляризованных лучей имеет широкое применение в кристаллооптике (чтобы определять структуру и ориентацию осей кристалла), в минералогии (определять минералы и горные породы), для выявлений деформаций в твердых телах и многое другое. Также интерференция применяется в следующих процессах:

  1. Проверка показателя качества обработки поверхностей. Так, посредством интерференции можно получить оценку качества обработки поверхности изделий с максимальной точностью. Для этого создается этого клиновидная тонкая воздушная прослойка между гладкой эталонной пластиной и поверхностью образца. Неровности на поверхности в таком случае провоцируют заметные искривления на интерференционных полосах, формирующихся в момент отражения света от проверяемой поверхности.
  2. Просветление оптики (используется для объективов современных кинопроекторов и фотоаппаратов). Так, на поверхность оптического стекла, к примеру, линзы, наносится тонкая пленка с показателем преломления, который при этом будет меньше показателя преломления стекла. При подборе толщины пленки таким образом, чтобы она стала равной половине длины волны, отраженные от границы воздух-пленка и пленка-стекло начинают ослаблять друг друга. При равных амплитудах обеих отраженных волн гашение света окажется полным.
  3. Голография (представляет собой фотографию трехмерного типа). Зачастую, с целью получения изображения определенного объекта фотографическим способом применяется фотоаппарат, фиксирующий рассеиваемое объектом излучение на фотопластинке. В таком случае, каждая точка объекта представляет центр рассеяния падающего света (посылая в пространство расходящуюся сферическую волну света, фокусирующую за счет объектива в пятно малых размеров на поверхности светочувствительной фотопластинки). Поскольку отражательная способность объекта изменяется от точки к точке, интенсивность попадающего на некоторые участки фотопластинки света, оказывается неодинаковой, что становится причиной возникновения изображения объекта, состоящего из формирующихся на каждом из участков светочувствительной поверхности изображений точек объекта. Трехмерные объекты при этом будут регистрироваться как плоские двумерные изображения.

Как было сказано выше, в естественном луче все время происходят хаотические изменения направления плоскости электрического поля. Поэтому если представить естественный луч как сумму двух взаимно-перпендикулярных колебаний, то необходимо считать разность фаз этих колебаний также хаотически меняющейся со временем.

В § 16 было пояснено, что необходимым условием интерференции является когерентность складываемых колебаний. Из этого обстоятельства и из определения естественного луча следует один из основных законов интерференции поляризованных лучей, установленных Араго: если мы из одного и того же естественного луча получим два луча, взаимно-перпендикулярно поляризованных, то эти два луча оказываются некогерентными и в дальнейшем уже не могут интерферировать между собой.

В недавнее время С. И. Вавилов теоретически и экспериментально показал, что могут существовать два естественных казалось бы, когерентных луча, не интерферирующих между собой. Для этой цели в интерферометре на пути одного из лучей он помещал «активное» вещество, поворачивающее плоскость поляризации на 90° (о вращении плоскости поляризации сказано в § 39). Тогда вертикальная компонента колебаний естественного луча становится горизонтальной, а горизонтальная - вертикальной, и повернутые компоненты складываются с не когерентными с ними компонентами второго луча. Вследствие этого после введения вещества интерференция исчезла.

Перейдем к разбору явлений интерференции поляризованного света, наблюдаемых в кристаллах. Обычная схема для наблюдения интерференции в параллельных лучах состоит (рис. 140) из поляризатора кристалла к и анализатора а. Разберем для простоты случай, когда ось кристалла перпендикулярна к лучу. Тогда

плоскополяризованный луч, вышедший из поляризатора в кристалле К разделится на два когерентных луча, поляризованных во взаимно-перпендикулярных плоскостях и идущих по одному направлению, но с разными скоростями.

Рис. 140. Схема установки для наблюдения интерференции в параллельных лучах.

Наибольший интерес представляют две ориентации главных плоскостей анализатора и поляризатора: 1) взаимно-перпендикулярные главные плоскости (скрещенные); 2) параллельные главные плоскости.

Рассмотрим сначала скрещенные анализатор и поляризатор.

На рис. 141 ОР означает плоскость колебаний луча, прошедшего через поляризатор; -его амплитуда; -направление оптической оси кристалла; перпендикуляр к оси; OA - главная плоскость анализатора.

Рис. 141. К расчету интерференции поляризованного света.

Кристалл как бы разлагает колебания по осям и на два колебания т. е. на необыкновенный и обыкновенный лучи. Амплитуда необыкновенного луча связана с амплитудой а и углом а следующим образом:

Амплитуда обыкновенного луча

Сквозь анализатор пройдут лишь проекция на равная

и проекция X на то же направление

Таким образом, мы получаем два колебания, поляризованных в одной плоскости, с равными, но противоположно направленными амплитудами. Сложение двух таких колебаний дает нуль, т. е. получается темнота, что соответствует обычному случаю скрещенных поляризатора и анализатора. Если же учесть, что между двумя лучами ввиду различия их скоростей в кристалле появилась дополнительная разность фаз, которую мы обозначим через то квадрат результирующей амплитуды выразится следующим образом (т. I, § 64, 1959 г.; в пред. изд. § 74):

т. е. сквозь комбинацию из двух скрещенных николей проходит свет, если между ними вставить кристаллическую пластинку. Очевидно, что количество прошедшего света зависит от величины разности фаз связанной со свойствами кристалла, его двойным лучепреломлением и толщиной. Только в случае или получится полная темнота независимо от кристалла (это соответствует случаю, когда ось кристалла перпендикулярна или параллельна главной плоскости николя). Тогда через кристалл идет только один луч - или обыкновенный, или необыкновенный.

Разность фаз зависит от длины световой волны. Пусть толщина пластинки есть длина волны (в пустоте) показатели преломления Тогда

Здесь длина волны обыкновенного луча, а - длина волны необыкновенного луча в кристалле. Чем больше толщина кристалла и чем больше разность между тем больше С другой стороны, обратно пропорциональна длине волны Таким образом, если для определенной длины волны равна что соответствует максимуму (так как в этом случае равен единице), то для длины волны, в 2 раза меньшей, уже равна что дает темноту (ибо в этом случае равен нулю). Этим и объясняются цвета, наблюдаемые при прохождении белого света сквозь описанную комбинацию из николей и кристаллической пластинки. Часть лучей, составляющих белый свет, гасится (это те, у которых близка к нулю или к четному числу другая же часть проходит, причем

сильнее всего проходят лучи, у которых близка к нечетному числу . Например, проходят красные лучи, а ослабляются синие и зеленые или наоборот.

Поскольку в формулу для входит становится понятным, что изменение толщины должно вызывать изменение цвета лучей, прошедших сквозь систему. Если поместить между николями клин из кристалла, то в поле зрения будут наблюдаться полосы всех цветов, параллельные ребру клина, вызываемые непрерывным ростом его толщины.

Теперь разберем, что будет происходить с наблюдаемой картиной при вращении анализатора.

Повернем второй николь так, чтобы его главная плоскость стала параллельной главной плоскости первого николя. В этом случае на рис. 141 линия одновременно изображает обе главные плоскости. Так же, как и раньше,

Но сквозь анализатор теперь пройдут проекции на

Мы получаем две неравные амплитуды, направленные в одну сторону. Без учета двойного лучепреломления результирующая амплитуда в этом случае равна просто а, как и должно быть при параллельных поляризаторе и анализаторе. Учет разности фаз, возникающей в кристалле между , приводит к следующей формуле для квадрата результирующей амплитуды:

Сравнивая формулы (2) и (4), мы видим, что т. е. сумма интенсивностей световых лучей, прошедших в этих двух случаях, равна интенсивности падающего луча. Отсюда следует, что картина, наблюдаемая во втором случае, является дополнительной к картине, наблюдаемой в первом случае.

Например, при в монохроматическом свете скрещенные николи дадут свет, так как в этом случае а параллельные - темноту, так как В белом свете, если в первом случае проходят красные лучи, то во втором случае при повороте николя на 90° будут проходить зеленые лучи. Эта смена цветов на дополнительные очень эффектна, особенно когда

интерференция наблюдается в кристаллической пластинке, составленной из кусочков различной толщины, дающих самые разнообразные цвета.

До сих пор, как мы уже указывали, речь шла о параллельном пучке лучей. Гораздо сложнее дело происходит при интерференции в сходящемся или расходящемся пучке лучей. Причиной усложнения служит то обстоятельство, что различные лучи пучка проходят различные толщины кристалла в зависимости от своего наклона. Мы остановимся здесь лишь на наиболее простом случае, когда ось конического пучка параллельна оптической оси кристалла; тогда только луч, идущий по оси, не претерпевает преломления; остальные лучи, наклонные к оси, в результате двойного лучепреломления разложатся каждый на обыкновенный и необыкновенный лучи (рис. 142). Ясно, что лучи, обладающие одинаковым наклоном, будут проходить одинаковые пути в кристалле. Следы этих лучей лежат на одной окружности.

При наложении двух когерентных лучей, поляризованных во взаимно перпендикулярных направлениях, никакой интерференционной картины, с характерным для нее чередованием максимумов и минимумов интенсивности, получиться не может. Интерференция возникает только в том случае, если колебания во взаимодействующих лучах совершаются вдоль одного и того же направления. Колебания в двух лучах, первоначально поляризованных во взаимно перпендикулярных направлениях, можно свести в одну плоскость, пропустив эти лучи через поляризатор, установленный так, чтобы его плоскость не совпадала с плоскостью колебаний ни одного из лучей.

Рассмотрим, что получается при наложении вышедших из кристаллической пластинки обыкновенного и необыкновенного лучей. Пусть пластинка вырезана параллельно оптической оси (рис. 137.1). При нормальном падении света на пластинку обыкновенный и необыкновенный лучи будут распространяться не разделяясь, но с различной скоростью (см. рис. 136.5, в). За время прохождения через пластинку между лучами возникнет разность хода

(137.1)

или разность фаз

(137.2)

Толщина пластинки, - длина волны в вакууме).

Таким образом, если пропустить естественный свет через вырезанную параллельно оптической оси кристаллическую пластинку (рис. 137.1, а), из пластинки выйдут два поляризованных во взаимно перпендикулярных плоскостях луча между которыми будет существовать разность фаз, определяемая формулой (137.2). Поставим на пути этих лучей поляризатор. Колебания обоих лучей после прохождения через поляризатор будут лежать в одной плоскости.

Амплитуды их будут равны составляющим амплитуд лучей 1 и 2 в направлении плоскости поляризатора (рис. 137.1,б).

Вышедшие из поляризатора лучи возникают в результате разделения света, полученного от одного источника. Поэтому они, казалось бы, должны интерферировать. Однако если лучи У и 2 возникают за счет прохождения через пластинку естественного света, они не дают интерференции. Это объясняется весьма просто. Хотя обыкновенный и необыкновенный лучи порождены одним и тем же источником света, они содержат в основном колебания, принадлежащие разным цугам волн, испускаемых отдельными атомами. В обыкновенном луче колебания обусловлены преимущественно цугами, плоскости колебаний которых близки к одному направлению в пространстве, в необыкновенном луче - цугами, плоскости колебаний которых близки к другому, перпендикулярному к первому направлению. Поскольку отдельные цуги некогерентны, возникающие из естественного света обыкновенный и необыкновенный лучи, а следовательно и лучи 1 и 2, также оказываются некогерентными.

Иначе обстоит дело, если на кристаллическую пластинку падает плоскополяризованный свет. В этом случае колебания каждого цуга разделяются между обыкновенным и необыкновенным лучами в одинаковой пропорции (зависящей от ориентации оптической оси пластинки относительно плоскости колебаний в падающем луче). Поэтому лучи , а следовательно и лучи 1 и 2, оказываются когерентными и будут интерферировать.

Обыкновенная и необыкновенная волны, возникающие в одноосном кристалле при падении на него плоскополяризованного света, когерентны и при определенных условиях могут интерферировать между собой. (Теория интерференции света и условия, необходимые для наблюдения интерференции подробно описаны в руководстве к лабораторным работам «Интерференция света», а также в , с. 347-349.)

На рис. 11 представлена оптическая схема, позволяющая наблюдать интерференцию поляризованного света. Плоско поляризованный свет, вышедший из поляризатора П , падает нормально на плоскопараллельную пластинку К , вырезанную из одноосного кристалла параллельно его оптической оси. На выходе из пластинки между обыкновенной и необыкновенной волнами возникает разность фаз

Где - оптическая разность хода, d – толщина пластинки. Хотя эти волны когерентны и распространяются после выхода из кристалла по одному и тому же направлению, они не могут интерферировать, так как поляризованы во взаимно перпендикулярных плоскостях. В результате их наложения получается эллиптически поляризованный свет (см. раздел 1, с. 5). Поэтому для получения интерференции необходимо совместить плоскости колебаний этих волн, что осуществляется анализатором А . Анализатор пропустит только ту составляющую каждого из этих колебаний, которая параллельна плоскости анализатора. Это иллюстрирует рис. 12, на котором плоскость анализатора проходит через отрезок ОО’ перпендикулярно плоскости рисунка, а Е о и E е – составляющие вектора Е обыкновенной и необыкновенной волн соответственно, пропущенные анализатором.

Интерференционная картина, наблюдаемая на выходе анализатора, зависит от нескольких факторов: разности фаз d , длины волны падающего света, угла между плоскостью поляризатора и оптической осью пластинки, а также угла между плоскостями поляризатора и анализатора. В зависимости от соотношения этих величин на экране будет наблюдаться различная освещенность.

В качестве примера опишем интерференционную картину в монохроматическом свете, наблюдаемую в том случае, когда угол между плоскостями поляризатора и анализатора равен нулю. Если разность фаз d , возникающая между обыкновенной и необыкновенной волнами (формула (8)), кратна 2p (d = 2mp ; m = ±1; ±2; ...), то интенсивность света, проходящего через анализатор, будет максимальна. Если же d = (2m +1)p (m = ±1; ±2; ...), то интенсивность света, проходящего через анализатор, минимальна. При значениях d , отличных от предыдущих, интенсивность света принимает промежуточное значение между максимумом и минимумом.

Если на пластинку будет падать плоско поляризованный белый свет, то при наблюдении через анализатор пластинка кажется окрашенной, причем при вращении анализатора или поляризатора относительно друг друга окраска пластинки будет изменяться. Это объясняется тем, что для монохроматических составляющих белого света, имеющих различную длину волны, значения разности фаз d , которые определяют результат их интерференции, неодинаковы.

В том случае, когда толщина d пластинки в различных местах разная, то, как следует из формулы (8), значения d также различны. Поэтому при наблюдении через анализатор такой пластинки в монохроматическом свете на ее поверхности видна система темных и светлых интерференционных полос, соответствующих участкам пластинки с одинаковой толщиной. В белом свете эта пластинка приобретает разноцветную окраску, причем каждая цветная интерференционная линия (изохромата ) соединяет те точки пластинки, где ее толщина d одинакова.

При наложении двух когерентных лучей, поляризованных во взаимно перпендикулярных направлениях, никакой интерференционной картины, с характерным для нее чередованием максимумов и минимумов интенсивности, не наблюдается. Интерференция возникает только в том случае, если колебания во взаимодействующих лучах совершаются вдоль одного и того же направления. Направления колебаний в двух лучах, первоначально поляризованных во взаимно перпендикулярных направлениях, можно свести в одну плоскость, пропустив эти лучи через поляризационное устройство, установленное так, чтобы его плоскость не совпадала с плоскостью колебаний ни одного из лучей.

Рассмотрим, что получается при наложении вышедших из кристаллической пластинки обыкновенного и необыкновенного лучей. При нормальном падении света

на параллельную оптической оси грань кристалла обыкновенный и необыкновенный лучи распространяются не разделяясь, но с различной скоростью. В связи с этим между ними возникает разность хода

или разность фаз

где d – путь, пройденный лучами в кристалле, λ 0 – длина волны в вакууме [см. формулы (17.3) и (17.4)].

Таким образом, если пропустить естественный свет через вырезанную параллельно оптической оси кристаллическую пластинку толщины d (рис. 12l,a), из пластинки выйдут два поляризованных во взаимно перпендикулярных плоскостях луча1 и2 1 , между которыми будет существовать разность фаз (31.2). Поставим на пути этих лучей какой-нибудь поляризатор, например поляроид или николь. Колебания обоих лучей после прохождения через поляризатор будут лежать в одной плоскости. Амплитуды их будут равны составляющим амплитуд лучей1 и2 в направлении плоскости поляризатора (рис. 121, б).

Поскольку оба луча получены разделением света, полученного от одного источника, они, казалось бы, должны интерферировать, и при толщине кристалла d такой, что возникающая между лучами разность хода (31.1) равна, например, λ 0 /2, интенсивность выходящих из поляризатора лучей (при определенной ориентации плоскости поляризатора) должна быть равна нулю.

Опыт, однако, показывает, что, если лучи 1 и2 возникают за счет прохождения через кристалл естественного света, они не дают интерференции, т. е. не являются когерентными. Это объясняется весьма просто. Хотя обыкновенный и необыкновенный лучи порождены одним и тем же источником света, они содержат в основном колебания, принадлежащие разным цугам волн, испускаемых отдельными атомами. Колебания, соответствующие одному такому цугу волн, совершаются в случайно ориентированной плоскости. В обыкновенном луче колебания обусловлены преимущественно цугами, плоскости колебаний которых близки к одному направлению в пространстве, в необыкновенном луче – цугами, плоскости колебаний которых близки к другому, перпендикулярному к первому направлению. Поскольку отдельные цуги некогерентны, возникающие из естественного света обыкновенный и необыкновенный лучи, а, следовательно, и лучи1 и2 , также оказываются некогерентными.

Иначе обстоит дело, если на кристаллическую пластинку, изображенную на рис. 121, падает плоскополяризованный свет. В этом случае колебания каждого цуга разделяются между обыкновенным и необыкновенным лучами в одной и той же пропорции (зависящей от ориентации оптической оси пластинки относительно плоскости колебаний в падающем луче), так что лучи о ие , а, следовательно, и лучи1 и2 , оказываются когерентными.

Две когерентные плоско-поляризованные световые волны, плоскости колебаний которых взаимно перпендикулярны, при наложении друг на друга дают, вообще говоря, эллиптически поляризованный свет. В частном случае может получиться свет, поляризованный по кругу, или плоскополяризованный свет. Какая из этих трех возможностей имеет место, зависит от толщины кристаллической пластинки и показателей преломления n e иn о, а также от соотношения амплитуд лучей1 и2 .

Вырезанная параллельно оптической оси пластинка, для которой (n о –n e)d = λ 0 /4, называетсяпластинкой в четверть волны ; пластинка, для которой, (n о –n e)d = λ 0 /2 называетсяпластинкой в полволны и т. д. 1 .

лучей будут неодинаковыми. Поэтому при наложении эти лучи образуют свет, поляризованный по эллипсу, одна из осей которого совпадает по направлению с осью пластинки O . Приφ, равном 0 или/2, в пластинке будет

14-я лекция. Дисперсия света.

Элементарная теория дисперсии. Комплексная диэлектрическая проницаемость вещества. Кривые дисперсии и поглощение света в веществе.

Волновой пакет. Групповая скорость.