2 основные свойства определенного интеграла. Простейшие свойства интегралов. Правила вычисления интегралов для чайников

Основной задачей дифференциального исчисления является нахождение производной f’(x) или дифференциала df= f’(x) dx функции f(x). В интегральном исчислении решается обратная задача. По заданной функции f(x ) требуется найти такую функцию F(x), что F’(х)= f(x) или dF(x)= F’(x) dx= f(x) dx.

Таким образом, основной задачей интегрального исчисления является восстановление функции F(x) по известной производной (дифференциалу) этой функции. Интегральное исчисление имеет многочисленные приложения в геометрии, механике, физике и технике. Оно дает общий метод нахождения площадей, объемов, центров тяжести и т. д..

Определение. Функция F(x), , называется первообразной для функции f(x) на множестве Х, если она дифференцируема для любого и F’(x)= f(x) или dF(x)= f(x) dx.

Теорема. Любая непрерывная на отрезке [ a; b] функция f(x) имеет на этом отрезке первообразную F(x).

Теорема. Если F 1 (x) и F 2 (x) – две различные первообразные одной и той же функции f(x) на множестве х, то они отличаются друг от друга постоянным слагаемым, т. е. F 2 (x)= F 1 x)+ C, где С – постоянная .

    Неопределенный интеграл, его свойства.

Определение. Совокупность F(x)+ C всех первообразных функции f(x) на множестве Х называется неопределенным интегралом и обозначается:

- (1)

В формуле (1) f(x) dx называется подынтегральным выражением, f(x) – подынтегральной функцией, х – переменной интегрирования, а С – постоянной интегрирования.

Рассмотрим свойства неопределенного интеграла, вытекающие из его определения.

1. Производная из неопределенного интеграла равна подынтегральной функции, дифференциал неопределенного интеграла равен подынтегральному выражению:

и .

2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

3. Постоянный множитель а (а≠0) можно выносить за знак неопределенного интеграла:

4. Неопределенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от этих функций:

5. Если F(x) – первообразная функции f(x), то:

6 (инвариантность формул интегрирования). Любая формула интегрирования сохраняет свой вид, если переменную интегрирования заменить любой дифференцируемой функцией этой переменной:

где u – дифференцируемая функция.

    Таблица неопределенных интегралов.

Приведем основные правила интегрирования функций.

Приведем таблицу основных неопределенных интегралов. (Отметим, что здесь, как и в дифференциальном исчислении, буква u может обозначать как независимую переменную (u= x) , так и функцию от независимой переменной (u= u(x)) .)


(n≠-1). (a >0, a≠1). (a≠0). (a≠0). (|u| > |a|). (|u| < |a|).

Интегралы 1 – 17 называют табличными.

Некоторые из приведенных выше формул таблицы интегралов, не имеющие аналога в таблице производных, проверяются дифференцированием их правых частей.

    Замена переменной и интегрирование по частям в неопределенном интеграле.

Интегрирование подстановкой (замена переменной). Пусть требуется вычислить интеграл

, который не является табличным. Суть метода подстановки состоит в том, что в интеграле переменную х заменяют переменной t по формуле x=φ(t), откуда dx=φ’(t) dt.

Теорема. Пусть функция x=φ(t) определена и дифференцируема на некотором множестве Т и пусть Х – множество значений этой функции, на котором определена функция f(x). Тогда если на множестве Х функция f(

Данные свойства используются для осуществления преобразований интеграла с целью его приведения к одному из элементарных интегралов и дальнейшему вычислению.

1. Производная неопределенного интеграла равна подынтегральной функции:

2. Дифференциал неопределенного интеграла равен подынтегральному выражению:

3. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

4. Постоянный множитель можно выносить за знак интеграла:

Причем a ≠ 0

5. Интеграл суммы (разности) равен сумме (разности) интегралов:

6. Свойство является комбинацией свойств 4 и 5:

Причем a ≠ 0 ˄ b ≠ 0

7. Свойство инвариантности неопределенного интеграла:

Если , то

8. Свойство:

Если , то

Фактически данное свойство представляет собой частный случай интегрирования при помощи метода замены переменной , который более подробно рассмотрен в следующем разделе.

Рассмотрим пример:

Сначала мы применили свойство 5, затем свойство 4, затем воспользовались таблицей первообразных и получили результат.

Алгоритм нашего онлайн калькулятора интегралов поддерживает все перечисленные выше свойства и без труда найдет подробное решение для вашего интеграла.

В дифференциальном исчислении решается задача:под анной функции ƒ(х) найти ее производную (или дифференциал). Интегральное исчисление решает обратную задачу: найти функцию F(x), зная ее производную F " (x)=ƒ(х) (или дифференциал). Искомую функцию F(x) называют первообразной функции ƒ(х) .

Функция F(x) называетсяпервообразной функции ƒ(х) на интервале (а; b), если для любого х є (а;b) выполняется равенство

F " (x)=ƒ(x) (или dF(x)=ƒ(x)dx).

Например , первообразной функции у=х 2 , х є R, является функция, так как

Очевидно, что первообразными Будут также любые функции

где С - постоянная, поскольку

Tеоpeмa 29. 1. Если функция F(x) является первообразной функции ƒ(х) на (а;b), то множество всех первообразных для ƒ(х) задается формулой F(x)+С, где С - постоянное число.

▲ Функция F(x)+С является первообразной ƒ(х).

Действительно, (F(x)+C) " =F " (x)=ƒ(x).

Пусть Ф(х) - некоторая другая, отличная от F(x), первообразная функции ƒ(х) , т. е. Ф " (x)=ƒ(х). Тогда для любого х є (а;b) имеем

А это означает (см. следствие 25. 1), что

где С - постоянное число. Следовательно, Ф(х)=F(x)+С.▼

Множество всех пepвoобpaзныx функций F(x)+С для ƒ(х) называетсянеопределенным интегралом от функции ƒ(х) и обозначается символом∫ ƒ(х) dx.

Таким образом, по определению

∫ ƒ(x)dx= F(x)+C.

Здесь ƒ(х) называетсяподынтегральнoй функцией , ƒ(x)dx — подынтегральным выражением, х -переменной интегрирования , ∫ -знаком неопределенного интеграла .

Операция нахождения неопределенного интеграла от функции называется интегрированием этой функции.

Геометрически неопределенный интеграл представляет собой семейство «параллельных» кривых у=F(x)+C (каждому числовому значению С соответствует определенная кривая семейства) (см. рис. 166). График каждой первообразной (кривой) называетсяинтегральной кривой .

Для всякой ли функции существует неопределенный интеграл?

Имеет место теорема, утверждающая, что «всякая непрерывная на (а;b) функция имеет на этом промежутке первообразную», а следoвaтельно, и неопределенный интеграл.

Отметим ряд свойств неопределенного интеграла, вытекающих из его определения.

1. Дифференциал от неопределенного интеграла равен подынтегральному выражению, а производная неопределенного интеграла равна подынтегральной функции:

d(ƒ(x)dx)=ƒ(x)dх, (ƒ(x)dx) " =ƒ(х).

Дeйcтвительнo, d(∫ ƒ(х) dx)=d(F(x)+С)=dF(x)+d(C)=F " (x) dx =ƒ(х) dx

(ƒ (x) dx) " =(F(x)+C)"=F"(x)+0 =ƒ (x).

Блaгoдapя этому свойству правильность интегрирования проверяется дифференцированием. Например, равенство

∫(3x 2 + 4) dx=х з +4х+С

верно, так как (х 3 +4х+С)"=3x 2 +4.

2. Hеопpедeлeнный интеграл от диффepeнциaла некоторой функции равен сумме этой функции и произвольной постоянной:

∫dF(x)= F(x)+C.

Действительно,

3. Постоянный множитель можно выносить за знак интеграла:

α ≠ 0 - постоянная.

Действительно,

(положили С 1 /а=С.)

4. Неопределенный интеграл от aлгeбpaическoй суммы конечного числа непрерывных функций равен aлгебpaичecкoй сумме интегралов от слагаемых функций:

Пусть F"(x)=ƒ(х) и G"(x)=g(x). Тогда

где С 1 ±С 2 =С.

5. (Инвариантность формулы интегрирования).

Если, где u=φ(х) - произвольная функция, имеющая непрерывную производную.

▲ Пусть х - независимая переменная, ƒ(х) - непрерывная функция и F(x) - ее пepвoобpaзнaя. Тогда

Положим теперь u=ф(х), где ф(х) - непрерывно-дифференцируемая функция. Рассмотрим сложную функцию F(u)=F(φ(x)). В силу инвараинтности формы первого дифференциала функции (см. с. 160) имеем

Отсюда▼

Таким образом, формула для неопределенного интеграла остается справедливой независимо от того, является ли переменная интегрирования независимой переменной или любой функцией от нее, имеющей непрерывную производную.

Так, из формулыпутем замены х на u (u=φ(х))получаем

В частности,

Пример 29.1. Найти интеграл

где С=C1+С 2 +С 3 +С 4 .

Пример 29.2. Найти интеграл Решение:

  • 29.3. Таблица основных неопределенных интегралов

Пользуясь тем, что интегрирование есть действие, обратное дифференцированию, можно получить таблицу основных интегралов путем обращения соответствующих формул диффepeнциaльнoгo исчисления (таблица дифференциалов) и использования свойств неопределенного интеграла.

Например , так как

d(sin u)=cos u . du,

Вывод ряда формул таблицы будет дан при рассмотрении основных методов интегрирования.

Интегралы в приводимой ниже таблице называются табличными. Их следует знать наизусть. В интегральном исчислении нет простых и универсальных правил отыскания первообразных от элементарных функций, как в дифференциальном исчислении. Методы нахождения пepвoобpaзных (т. е. интегрирования функции) сводятся к указанию приемов, приводящих данный (искомый) интеграл к табличному. Следовательно, необходимо знать табличные интегралы и уметь их узнавать.

Отметим, что в таблице основных интегралов переменная интегрирования и может обозначать как независимую переменную, так и функцию от независимой переменной (coгласнo свойству инвариантности формулы интeгpиpoвания).

В справедливости приведенных ниже формул можно убедиться, взяв диффepeнциaл правой части, который будет равен подынтегральному выражению в левой части формулы.

Докажем, например, справедливость формулы 2. Функция 1/u определена и непрерывна для всех значений и, отличных от нуля.

Если u > 0, то ln|u|=lnu, тогда Поэтому

Eсли u<0, то ln|u|=ln(-u). Но Значит

Итак, формула 2 верна. Aнaлoгичнo, провepим формулу 15:

Таблица оснoвныx интегралов



Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.

Первообразная и неопределенный интеграл.

Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство для любого х из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C, для произвольной константы С, причем эти первообразные отличаются друг от друга на произвольную постоянную величину.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называют подынтегральным выражением, а f(x) – подынтегральной функцией. Подынтегральное выражение представляет собой дифференциал функции f(x).

Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

Табличные интегралы


Простейшие свойства интегралов

1. Производная результата интегрирования равна подынтегральной функции.

2. Неопределенный интеграл дифференциала функции равен сумме самой функции и произвольной константы.

3. Коэффициент можно выносить за знак неопределенного интеграла.

4. Неопределенный интеграл суммы/разности функций равен сумме/разности неопределенных интегралов функций.

Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения.

Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств:

Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах.

Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь:

первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно;



второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов.

1.4.Инвариантность форм интегрирования.

Инвариантное интегрирование - вид интегрирования для функций, аргументом которых являются элементы группы или точки однородного пространства (любую точку такого пространства можно перевести в другую заданным действием группы).

функции f(x)сводится к вычислению интеграла от дифференциальной формы f.w, где

Явная ф-ла для r(х)приводится ниже. Условие согласования имеет вид .

здесь Tg означает оператор сдвига на X с помощью gОG: Tgf(x)=f(g-1x). Пусть X=G - топология, группа, действующая на себе левыми сдвигами. И. и. существует тогда и только тогда, когда G локально компактна (в частности, на бесконечномерных группах И. и. не существует). Для подмножества И. и. характеристических функции cA (равной 1 на A и 0 вне А)задаёт левую меру Xаара m(A). Определяющим свойством этой меры является её инвариантность при левых сдвигах: m(g-1A)=m(А)для всех gОG. Левая мера Хаара на группе определена однозначно с точностью до положит, скалярного множителя. Если известна мера Хаара m, то И. и. функции f даётся формулой . Аналогичными свойствами обладает правая мера Хаара. Существует непрерывный гомоморфизм (отображение, сохраняющее групповое свойство) DG группы G в группу (относительно умножения) положит. чисел, для которого

где dmr и dmi - правая и левая меры Хаара. Функцию DG(g) наз. модулем группы G. Если , то группа G наз. унимодулярной; в этом случае правая и левая меры Хаара совпадают. Компактные, полупростые и нильпотентные (в частности, коммутативные) группы унимодулярны. Если G - n-мерная группа Ли и q1, ...,qn - базис в пространстве левоинвариантных 1-форм на G, то левая мера Хаара на G задаётся n-формой . В локальных координатах для вычисления

форм qi можно воспользоваться любой матричной реализацией группы G: матричная 1-форма g-1dg левоинвариантна, а её коэф. являются левоинвариантными скалярными 1-формами, из которых и выбирается искомый базис. Напр., полная матричная группа GL(n, R)унимодулярна и мера Хаара на ней задаётся формой. Пусть X=G/H - однородное пространство, для которого локально компактная группа G является группой преобразований, а замкнутая подгруппа Н - стабилизатором некоторой точки. Для того чтобы на X существовало И. и., необходимо и достаточно, чтобы для всех hОH выполнялось равенство DG(h)=DH(h). В частности, это верно в случае, когда Н компактна или полупроста. Полной теории И. и. на бесконечномерных многообразиях не существует.

Замена переменных.


В этой статье мы перечислим основные свойства определенного интеграла. Большинство этих свойств доказываются на основе понятий определенного интеграла Римана и Дарбу .

Вычисление определенного интеграла очень часто проводится с использованием первых пяти свойств, так что мы будем при надобности на них ссылаться. Остальные свойства определенного интеграла, в основном, применяются для оценки различных выражений.


Прежде чем перейти к основным свойствам определенного интеграла , условимся, что a не превосходит b .

    Для функции y = f(x) , определенной при x = a , справедливо равенство .

    То есть, значение определенного интеграла с совпадающими пределами интегрирования равно нулю. Это свойство является следствием определения интеграла Римана, так как в этом случае каждая интегральная сумма для любого разбиения промежутка и любого выбора точек равна нулю, так как , следовательно, пределом интегральных сумм является ноль.

    Для интегрируемой на отрезке функции выполняется .

    Другими словами, при перемене верхнего и нижнего пределов интегрирования местами значение определенного интеграла меняется на противоположное. Это свойство определенного интеграла также следует из понятия интеграла Римана, только нумерацию разбиения отрезка следует начинать с точки x = b .

    для интегрируемых на отрезке функций y = f(x) и y = g(x) .

    Доказательство.

    Запишем интегральную сумму функции для данного разбиения отрезка и данного выбора точек :

    где и - интегральные суммы функций y = f(x) и y = g(x) для данного разбиения отрезка соответственно.

    Переходя к пределу при получим , что по определению интеграла Римана равносильно утверждению доказываемого свойства.

    Постоянный множитель можно выносить за знак определенного интеграла. То есть, для интегрируемой на отрезке функции y = f(x) и произвольного числа k справедливо равенство .

    Доказательство этого свойства определенного интеграла абсолютно схоже с предыдущим:

    Пусть функция y = f(x) интегрируема на интервале X , причем и , тогда .

    Это свойство справедливо как для , так и для или .

    Доказательство можно провести, опираясь на предыдущие свойства определенного интеграла.

    Если функция интегрируема на отрезке , то она интегрируема и на любом внутреннем отрезке .

    Доказательство основано на свойстве сумм Дарбу: если к имеющемуся разбиению отрезка добавить новые точки, то нижняя сумма Дарбу не уменьшится, а верхняя – не увеличиться.

    Если функция y = f(x) интегрируема на отрезке и для любого значения аргумента , то .

    Это свойство доказывается через определение интеграла Римана: любая интегральная сумма для любого выбора точек разбиения отрезка и точек при будет неотрицательной (не положительной).

    Следствие.

    Для интегрируемых на отрезке функций y = f(x) и y = g(x) справедливы неравенства:

    Это утверждение означает, что допустимо интегрирование неравенств. Этим следствием мы будем пользоваться при доказательстве следующих свойств.

    Пусть функция y = f(x) интегрируема на отрезке , тогда справедливо неравенство .

    Доказательство.

    Очевидно, что . В предыдущем свойстве мы выяснили, что неравенство можно почленно интегрировать, поэтому, справедливо . Это двойное неравенство можно записать как .

    Пусть функции y = f(x) и y = g(x) интегрируемы на отрезке и для любого значения аргумента , тогда , где и .

    Доказательство проводится аналогично. Так как m и M – наименьшее и наибольшее значение функции y = f(x) на отрезке , то . Домножение двойного неравенства на неотрицательную функцию y = g(x) приводит нас к следующему двойному неравенству . Интегрируя его на отрезке , придем к доказываемому утверждению.

    Следствие.

    Если взять g(x) = 1 , то неравенство примет вид .

    Первая формула среднего значения.

    Пусть функция y = f(x) интегрируема на отрезке , и , тогда существует такое число , что .

    Следствие.

    Если функция y = f(x) непрерывна на отрезке , то найдется такое число , что .

    Первая формула среднего значения в обобщенной форме.

    Пусть функции y = f(x) и y = g(x) интегрируемы на отрезке , и , а g(x) > 0 для любого значения аргумента . Тогда существует такое число , что .

    Вторая формула среднего значения.

    Если на отрезке функция y = f(x) интегрируема, а y = g(x) монотонна, то существует такое число , что справедливо равенство .