Сфера, вписанная в цилиндр, конус и усеченный конус. Презентация "сфера, вписанная в конус или многогранник и сфера, описаннная около конуса или многогранника"

\[{\Large{\text{Цилиндр}}}\]

Рассмотрим окружность \(C\) с центром \(O\) радиуса \(R\) на плоскости \(\alpha\) . Через каждую точку окружности \(C\) проведем прямую перпендикулярно плоскости \(\alpha\) . Поверхность, образованная этими прямыми, называется цилиндрической поверхностью .
Сами прямые называются образующими данной поверхности.

Проведем теперь через некоторую точку некоторой образующей плоскость \(\beta\parallel \alpha\) . Множество точек, по которым образующие пересекут плоскость \(\beta\) , образует окружность \(C"\) , равную окружности \(C\) .
Часть пространства, ограниченная двумя кругами \(K\) и \(K"\) с границами \(C\) и \(C"\) соответственно, а также частью цилиндрической поверхности, заключенной между плоскостями \(\alpha\) и \(\beta\) , называется цилиндром .

Круги \(K\) и \(K"\) называются основаниями цилиндра; отрезки образующих, заключенных между плоскостями, – образующими цилиндра; часть цилиндрической поверхности, образованная ими, - боковой поверхностью цилиндра. Отрезок, соединяющий центры оснований цилиндра равен образующей цилиндра и равен высоте цилиндра (\(l=h\) ).

Теорема

Площадь боковой поверхности цилиндра равна \

где \(R\) – радиус основания цилиндра, \(h\) – высота (образующая).

Теорема

Площадь полной поверхности цилиндра равна сумме площади боковой поверхности и площадей обоих оснований \

Теорема

Объем цилиндра вычисляется по формуле \

\[{\Large{\text{Конус}}}\]

Рассмотрим плоскость \(\alpha\) и на ней окружность \(C\) с центром \(O\) и радиусом \(R\) . Через точку \(O\) проведем прямую, перпендикулярную плоскости \(\alpha\) . Отметим на этой прямой некоторую точку \(P\) . Поверхность, образованная всеми прямыми, проходящими через точку \(P\) и каждую точку окружности \(C\) , называется конической поверхностью , а эти прямые – образующими конической поверхности. Часть пространства, ограниченная кругом с границей \(C\) и отрезками образующих, заключенными между точкой \(P\) и точкой на окружности, называется конусом . Отрезки \(PA\) , где \(A\in \text{окр. } C\) , называются образующими конуса ; точка \(P\) – вершина конуса; круг с границей \(C\) – основание конуса; отрезок \(PO\) – высота конуса.


Замечание

Заметим, что у конуса высота и образующая не равны друг другу, как было в случае с цилиндром.

Теорема

Площадь боковой поверхности конуса равна \

где \(R\) – радиус основания конуса, \(l\) – образующая.

Теорема

Площадь полной поверхности конуса равна сумме площади боковой поверхности и площадей основания \

Теорема

Объем конуса вычисляется по формуле \

Замечание

Заметим, что цилиндр в каком-то смысле является призмой, только в основании находится не многоугольник (как у призмы), а круг.
Формула объема цилиндра такая же, как и формула объема призмы: произведение площади основания на высоту.

Аналогично конус в каком-то смысле является пирамидой. Поэтому формула объема конуса такая же, как и у пирамиды: треть площади основания на высоту.

\[{\Large{\text{Сфера и шар}}}\]

Рассмотрим множество точек пространства, равноудаленных от некоторой точки \(O\) на расстояние \(R\) . Это множество называется сферой с центром в точке \(O\) радиуса \(R\) .
Отрезок, соединяющий две точки сферы и проходящий через ее центр называется диаметром сферы.

Сфера вместе со своей внутренностью называется шаром .


Теорема

Площадь сферы вычисляется по формуле \

Теорема

Объем шара вычисляется по формуле \

Определение

Шаровой сегмент – это часть шара, отсекаемая от него некоторой плоскостью.
Пусть плоскость пересекла шар по кругу \(K\) с центром в точке \(Q\) . Соединим точки \(O\) (центр шара) и \(Q\) и продлим этот отрезок до пересечения со сферой – получим радиус \(OP\) . Тогда отрезок \(QP\) называется высотой сегмента.


Теорема

Пусть \(R\) – радиус шара, \(h\) – высота сегмента, то объем шарового сегмента равен \

Определение

Шаровой слой – это часть шара, заключенная между двумя параллельными плоскостями, пересекающими этот шар. Круги, по которым плоскости пересекают шар, называются основаниями шарового слоя, отрезок, соединяющий центры оснований – высотой шарового слоя.
Две оставшиеся части шара являются в этом случае шаровыми сегментами.

Объем шарового слоя равен разности объема шара и объемов шаровых сегментов с высотами \(AP\) и \(BT\) .

Сфера, вписанная в конус Сфера называется вписанной в конус, если она касается его основания и боковой поверхности (касается каждой образующей). При этом конус называется описанным около сферы. В любой конус (прямой, круговой) можно вписать сферу. Ее центр находится на высоте конуса, а радиус равен радиусу окружности, вписанной в треугольник, являющийся осевым сечением конуса. Напомним, что радиус r окружности, вписанный в треугольник, находится по формуле r  S p , где S – площадь, p – полупериметр треугольника.

Упражнение 3 Радиус основания конуса равен 1. Образующая наклонена к плоскости основания под углом 45о. Найдите радиус вписанной сферы. Решение. Высота SH конуса 2 равна 1. Образующая.  1 Полупериметр p равен 2. По формуле r = S/p, имеем  2 1.  2 1.  r  1  1 2 r  Ответ:

Упражнение 4 Высота конуса равна 8, образующая 10. Найдите радиус вписанной сферы. Решение. Радиус основания конуса равен 6. Площадь треугольника SFG равна 48, полупериметр 16. По формуле r = S/p имеем r = 3. Ответ: r = 3.

Сфера, описанная около конуса Сфера называется описанной около конуса, если вершина и окружность основания конуса лежат на сфере. При этом конус называется вписанным в сферу. Около любого конуса (прямого, кругового) можно описать сферу. Ее центр находится на высоте конуса, а радиус равен радиусу окружности, описанной около треугольника, являющимся осевым сечением конуса. Напомним, что радиус R окружности, описанной около треугольника, abc находится по формуле S 4 , где S – площадь, a, b, c – стороны треугольника. R 

Упражнение 1 Около конуса, радиус основания которого равен 1, а образующая равна 2, описана сфера. Найдите ее радиус. Решение. Треугольник SAB равносторонний со стороной 2. Высота SH равна Площадь S равна По формуле R = abc/4S 3. получаем 3. R  2 3 3 .

Упражнение 2 Около конуса, радиус основания которого равен 4, описана сфера радиуса 5. Найдите высоту h конуса. Решение. Имеем, OB = 5, HB = 4. Следовательно, OH = 3. Учитывая, что SO = OB = 5, получаем h = 8. Ответ: h = 8.

Многогранники, вписанные в сферу Теорема. Около призмы можно описать сферу тогда и только тогда, когда около основания этой призмы можно описать окружность. Ее центром будет серединой отрезка, соединяющего центры окружностей, описанных около оснований призмы. Радиус сферы R вычисляется по формуле точка O, являющаяся где h – высота призмы, r – радиус окружности, описанной около основания призмы. R   r 2 , 2 h   2   

Упражнение 1 Найдите радиус сферы, описанной около единичного куба. Ответ: R  3 2 .

Упражнение 2 Найдите ребро куба, вписанного в единичную сферу. Ответ: a  2 3 3 .

Рассмотрим некоторые соотношения, которые полезны при решении задач на шар, вписанный в конус.

В любой конус можно вписать шар. Вписанный в конус шар (или сфера, вписанная в конус) касается основания конуса в его центре, а боковой поверхности — по окружности. Центр шара (сферы) лежит на оси конуса.

При решении задач на шар, вписанный в конус, удобнее всего рассмотреть сечение комбинации тел плоскостью, проходящей через ось конуса и центр шара.

Это сечение представляет собой равнобедренный треугольник, боковые стороны которого — образующие конуса, а основание — диаметр конуса. Вписанный в этот треугольник круг — большой круг шара (то есть круг, радиус которого равен радиусу шара).

Для данного рисунка образующие SA=SB=l, высота конуса SO=H, радиус вписанного шара OO1=O1F=R. Так как центр вписанного круга — точка пересечения биссектрис треугольника, то ∠OBO1=∠FBO1, OB=r — радиус конуса.

Рассмотрим прямоугольный треугольник SOB. По свойству биссектрисы треугольника:

По теореме Пифагора

Рассмотрим прямоугольный треугольник OO1B.