Презентация по физике на тему рентгеновское излучение. Презентация на тему "рентгеновское излучение". Инфракрасное излучение в медицине

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Редкий человек не проходил через рентгеновский кабинет. А уж снимки, сделанные в рентгеновских лучах, знакомы каждому. Рентгеновское излучение было открыто немецким физиком В.Рентгеном (1845–1923). Его имя увековечено и в некоторых других физических терминах, связанных с этим излучением: рентгеном называется международная единица дозы ионизирующего излучения; снимок, сделанный в рентгеновском аппарате, называется рентгенограммой; область радиологической медицины, в которой используются рентгеновские лучи для диагностики и лечения заболеваний, называется рентгенологией.

3 слайд

Описание слайда:

Далее Рентген установил, что проникающая способность обнаруженных им неизвестных лучей, которые он назвал Х-лучами, зависит от состава поглощающего материала. Он получил также изображение костей собственной руки, поместив ее между разрядной трубкой с катодными лучами и экраном с покрытием из цианоплатинита бария. Рентген открыл излучение в 1895 году, будучи профессором физики Вюрцбургского университета. Проводя эксперименты с катодными лучами, он заметил, что расположенный вблизи вакуумной трубки экран, покрытый кристаллическим цианоплатинитом бария, ярко светится, хотя сама трубка закрыта черным картоном. Так впервые просветил свою руку сам Рентген в 1895 году.

4 слайд

Описание слайда:

Новые лучи возникали в так называемой разрядной трубке, где поток отрицательно заряженных частиц падал, тормозясь, на мишень. Чуть позднее выяснилось, что эти частицы - электроны. Сам Рентген, не зная о существовании электрона, природу открытых им лучей объяснить не смог. Поток электронов Рентгеновские лучи РЕНТГЕНОВСКОЕ излучение, не видимое глазом электромагнитное излучение с длиной волны 10-7 – 10-14м. Испускается при торможении быстрых электронов в веществе (тормозной спектр) и при переходах электронов в атоме с внешних электронных оболочек на внутренние (характеристический спектр).

5 слайд

Описание слайда:

За открытием Рентгена последовали эксперименты других исследователей, обнаруживших много новых свойств и возможностей применения этого излучения. Большой вклад внесли М.Лауэ, В.Фридрих и П.Книппинг, продемонстрировавшие в 1912 дифракцию рентгеновского излучения при прохождении его через кристалл; У.Кулидж, который в 1913 изобрел высоковакуумную рентгеновскую трубку с подогретым катодом; Г.Мозли, установивший в 1913 зависимость между длиной волны излучения и атомным номером элемента; Г. и Л.Брэгги, получившие в 1915 Нобелевскую премию за разработку основ рентгеноструктурного анализа.

6 слайд

Описание слайда:

Источники рентгеновского излучения: рентгеновская трубка, ускорители электронов, лазеры, солнечная корона, небесные тела.

7 слайд

Описание слайда:

Свойства рентгеновского излучения Обладает большой проникающей способностью, Вызывает люминесценцию, Активно воздействует на клетки живого организма, Способно вызывать ионизацию газа и фотоэффект, Воздействует с атомами кристаллической решётки, Наблюдается интерференция и дифракция на кристаллической решётке, Почти не преломляется и не отражается, Облучение в больших дозах вызывает лучевую болезнь.

8 слайд

Описание слайда:

Рентгеновское излучение, невидимо для глаза, поэтому все наблюдения с ним проводятся с помощью флуоресцирующих экранов или фотоплёнок. Приемники рентгеновского излучения - фотопленка, рентгеновский экран и др. Проникает через некоторые непрозрачные материалы. Применяется в медицине, дефектоскопии, спектральном и структурном анализе.

9 слайд

Описание слайда:

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

10 слайд

Описание слайда:

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла. Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность. Также рентгеновское излучение применяется в искусствоведении и криминалистике.

11 слайд

Описание слайда:

ПОЛУЧЕНИЕ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ Рентгеновское излучение возникает при взаимодействии электронов, движущихся с большими скоростями, с веществом. Когда электроны соударяются с атомами какого-либо вещества, они быстро теряют свою кинетическую энергию. При этом большая ее часть переходит в тепло, а небольшая доля, обычно менее 1%, преобразуется в энергию рентгеновского излучения. Эта энергия высвобождается в форме квантов – частиц, называемых фотонами, которые обладают энергией, но масса покоя которых равна нулю. Рентгеновские фотоны различаются своей энергией, обратно пропорциональной их длине волны. При обычном способе получения рентгеновского излучения получают широкий диапазон длин волн, который называют рентгеновским спектром.

12 слайд

Описание слайда:

Если электрон наталкивается на относительно тяжелое ядро, то он тормозится, а его кинетическая энергия выделяется в виде рентгеновского фотона примерно той же энергии. Если же он пролетит мимо ядра, то потеряет лишь часть своей энергии, а остальную будет передавать попадающимся на его пути другим атомам. Каждый акт потери энергии ведет к излучению фотона с какой-то энергией. Возникает непрерывный рентгеновский спектр, верхняя граница которого соответствует энергии самого быстрого электрона. Рентгеновское излучение можно получать не только электронной бомбардировкой, но и облучением мишени рентгеновским же излучением от другого источника. В этом случае, однако, большая часть энергии падающего пучка переходит в характеристический рентгеновский спектр и очень малая ее доля приходится на непрерывный. Очевидно, что пучок падающего рентгеновского излучения должен содержать фотоны, энергия которых достаточна для возбуждения характеристических линий бомбардируемого элемента. Высокий процент энергии, приходящейся на характеристический спектр, делает такой способ возбуждения рентгеновского излучения удобным для научных исследований

13 слайд

Описание слайда:

Еще одно важное применение рентгеновских лучей - в астрономии. Регистрировать на Земле это излучение трудно из-за поглощения в атмосфере. Но когда приборы стали поднимать на ракетах и спутниках, они зафиксировали рентгеновское излучение Солнца и звезд. Главное же - удалось поймать такие лучи от вообще неизвестных ранее небесных объектов - пульсаров. Это как бы рентгеновские маяки, мигающие нам из далеких просторов космоса.

14 слайд

Описание слайда:

1. Установите соответствие. 1. В. Рентген открыл новое излучение, занимаясь исследованием... 2. Эти лучи возникали на... 3. Ученый наблюдал... 4. В. Рентген установил, что при работе газоразрядной трубки возникает A. Аноде газоразрядной трубки. Б. Стекле в месте попадания на него катодных лучей. Свечение экрана, смоченного раствором платиносинеродистого бария, находящегося вблизи трубки. Г. Катодных лучей. Д. Неизвестное ранее излучение, обладающее большой проникающей способностью. Е. Рентгеновского излучения (Х-лучей). 2. Установите соответствие. 1. В. Рентген обнаружил, что новое излучение возникает на... 2. Последующие эксперименты показали, что катодные лучи представляют собой. 3. Было обнаружено, что рентгеновское излучение возникает при... A. Потоки очень быстрых электронов. Б. Катоде газоразрядной трубки. Торможении электронов любым препятствием. Г. Неизвестное ранее излучение, обладающее большой проникающей способностью. Д. Аноде газоразрядной трубки. Е. Ускорении электронов электрическим полем. На рисунке показана схема рентгеновской трубки. установите соответствие. 1. Свободные электроны возникают в трубке в результате... 2. Ускорение электронов при движении к аноду происходит под действием... 3. Положительный потенциал подается на... 4. Напряжение между электродами рентгеновской трубки достигает... 5. Для увеличения длины свободного пробега электронов давление газа в рентгеновской трубке должно быть Электрического поля. Б. Термоэлектронной эмиссии. Анод. Г. 104 В. Д. Катод. Е. Очень низким. Ж. 103 В. 3. Низким.

Слайд 1

Рентгеновское излучение

Электромагнитные волны, энергия фотонов, которых лежит на школе электромагнитных волн между ультрафиолетовым излучением и гамма-излучением. - не видимое глазом электромагнитное излучение с длиной волн 10−7-10−12м.

Слайд 2

История открытия

Рентгеновское излучение было открыто Вильгельмом Конрадом Рёнтгеном. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием «О новом типе лучей» была опубликована 28-го декабря 1895 года в журнале физико-медицинского общества. В некоторых кругах утверждается, что рентгеновские лучи были уже получены до этого. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов. По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи независимо - при наблюдении флюоресценции, возникающей при работе катодолучевой трубки

Слайд 3

Лабораторные источники -Рентгеновская трубка

Схематическое изображение рентгеновской трубки. X - рентгеновские лучи, K - катод, А - анод (иногда называемый антикатодом), С - теплоотвод, Uh -напряжение накала катода, Ua - ускоряющее напряжение, Win - впуск водяного охлаждения, Wout - выпуск водяного охлаждения

Слайд 4

Рентгеновская трубка

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод.

Слайд 5

Трубка Крукса

Слайд 6

Современная рентгеновская трубка

Слайд 7

Лабораторные источники -Ускорители частиц

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Так называемое синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению

Слайд 8

Линейный ускоритель электронов для Австралийского синхротрона.

Слайд 9

Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Слайд 10

Применение

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов

Слайд 12

В материаловедении, кристаллограф и, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК. Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества.

Слайд 13

В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Слайд 14

Рентгенотерапия - раздел лучевой терапии, охватывающий теорию и практику лечебного применения рентгеновских лучей. Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях, в том числе заболеваниях кожи.

Лекция 11 для студентов 1 курса, обучающихся по специальности Педиатрия К.п.н., доцент Шилина Н.Г. Красноярск, 2012 Рентгеновское излучение. Радиоактивность Тема: Рентгеновское излучение. Радиоактивность Кафедра медицинской и биологической физики




Рентгеновское излучение Рентгеновское излучение - электромагнитные волны с длиной от 80 до нм.










> Ав (эффект Комптона) hν = Ав + Ek+ hν" – уравнение Комптона" title="Взаимодействие рентгеновского излучения с веществом Когерентное рассеяние ФотоэффектНекогерентное рассеяние hν> Ав (эффект Комптона) hν = Ав + Ek+ hν" – уравнение Комптона" class="link_thumb"> 8 Взаимодействие рентгеновского излучения с веществом Когерентное рассеяние ФотоэффектНекогерентное рассеяние hν> Ав (эффект Комптона) hν = Ав + Ek+ hν" – уравнение Комптона > Ав (эффект Комптона) hν = Ав + Ek+ hν" – уравнение Комптона"> > Ав (эффект Комптона) hν = Ав + Ek+ hν" – уравнение Комптона"> > Ав (эффект Комптона) hν = Ав + Ek+ hν" – уравнение Комптона" title="Взаимодействие рентгеновского излучения с веществом Когерентное рассеяние ФотоэффектНекогерентное рассеяние hν> Ав (эффект Комптона) hν = Ав + Ek+ hν" – уравнение Комптона"> – уравнение Комптона" title="Взаимодействие рентгеновского излучения с веществом Когерентное рассеяние ФотоэффектНекогерентное рассеяние hν> Ав (эффект Комптона) hν = Ав + Ek+ hν" – уравнение Комптона">




Применение рентгеновского излучения Рентгенодиагностика (до 120 кэВ) Рентгенография Изображение на фотопленке Рентгеноскопия Изображение на рентгенолюминесцирующем экране Рентгенотерапия кэВ


































Линейная плотность ионизации – это отношение ионов одного знака, dn образованных заряженной ионизирующей частицей на элементарном пути dL, к длине этого пути. I = dn/dL Линейная тормозная способность – это отношение энергии dE, теряемой заряженной ионизирующей частицей при прохождении элементарного пути dL, к длине этого пути. S = dE/dL




Характеристикиα- излучение - излучение Скорость, см/с2 · · Энергия, МэВ70,01 3 Пробег (воздух)2 9 см см Пробег (ткань)0,01 см1 1,5 см Плотность ионизации (пар ионов/см) 50 · Взаимодействие с веществом


Элементы дозиметрии Доза излучения (поглощенная доза) – отношение энергии, переданной веществу, к его массе. 1 рад = Гр


Элементы дозиметрии Экспозиционная доза Х – мера ионизации воздуха рентгеновским или гамма-излучением 1 рентген – экспозиционная доза рентгеновского или гамма-излучения, при которой в результате полной ионизации 1см 3 сухого воздуха при н.у. образуются ионы, несущие заряд, равный 1 ед.СГС каждого знака. 1Р = 2,58·10 -4 Кл/кг; D = fX


Эквивалентная доза Позволяет сравнивать биологические эффекты, вызванные различными радиоактивными излучениями К – коэффициент качества (ОБЭ) показывает во сколько раз эффективность биологического действия данного вида излучения больше, чем рентгеновского или гамма-излучения. Н = КD [Н] = Зиверт (Зв) 1бэр = 0,01 Зв










ДозаСИВнесистемные ПоглощеннаяДж/кг=Гр 1Гр = 100 рад рад 1 рад = 0,01 Гр Мощность поглощенной Вт/кг=Гр/срад/c ЭкспозиционнаяКл/кг Кл/кг=3876 Р Р(рентген) · 1 Р=2,58 · Кл/кг Мощность экспозиционной Кл/(кг·с) = А / кг (ампер на кг) Р/сР/с ЭквивалентнаяДж/кг=Зв 1Зв = 100 бэр бэр 1 бэр = 0,01 Зв Мощность эквивалентной Зв/c=Дж/(кг·с)бэр/c Соотношения между единицами доз











РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА Обязательная: Ремизов А.Н. Медицинская и биологическая физика: учебник. -М.: Дрофа, Дополнительная: Федорова В.Н. Краткий курс медицинской и биологической физики с элементами реабилитологии: учебное пособие. -М.: Физматлит, Антонов В.Ф. Физика и биофизика. Курс лекций: учебное пособие.-М.: ГЭОТАР-Медиа, Богомолов В.М. Общая физиотерапия: учебник. -М.: Медицина, Самойлов В.О. Медицинская биофизика: учебник. -СПб.: Спецлит, Руководство к лабораторным работам по медицинской и биологической физике для самост. работы студентов /сост. О.Д. Барцева и др. Красноярск: Литера-принт, Сборник задач по медицинской и биологической физике: учебное пособие для самост. работы студентов / сост. О.П.Квашнина и др. -Красноярск: тип.КрасГМА, Физика. Физические методы исследования в биологии и медицине: метод. указания к внеаудит. работе студентов по спец. – педиатрия / сост. О.П.Квашнина и др. -Красноярск: тип.КрасГМУ, Электронные ресурсы: ЭБС КрасГМУ Ресурсы интернет Электронная медицинская библиотека. Т.4. Физика и биофизика.- М.: Русский врач, 2004.



Слайд 2

Рентге́новскоеизлуче́ние- электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов - эквивалентны. Терминологическое различие лежит в способе возникновения - рентгеновские лучи испускаются при участии электронов в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер

Слайд 3

Рентгеновские трубки Рентгеновские лучи возникают при сильном ускорении заряженных частиц, либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках

Слайд 4

Основными конструктивными элементами таких трубок являются металлические катод и анод. В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом и ударяются об анод, где происходит их резкое торможение. При этом за счёт тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. В настоящее время аноды изготавливаются главным образом из керамики, причём та их часть, куда ударяют электроны, - из молибдена или меди. В процессе ускорения-торможения лишь около 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.

Слайд 5

Ускорители частиц Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Так называемое синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах в спектре синхротронного излучения можно получить и рентгеновские лучи

Слайд 6

Взаимодействие с веществом Длина волны рентгеновских лучей сравнима с размерами атомов, поэтому не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей. В частности выяснилось, что их хорошо отражает алмаз

Слайд 7

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d - толщина слоя, коэффициент k пропорционален Z³λ³, Z - атомный номер элемента, λ - длина волны).

Слайд 8

Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния:

Слайд 9

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором. Биологическое воздействие

Cлайд 1

РЕНТГЕНОВСКИЕ ЛУЧИ Учитель физики Трифоева Наталия Борисовна Школа № 489 Московского р-на Санкт-Петербурга

Cлайд 2

Открытие рентгеновских лучей В конце XIX века всеобщее внимание физиков привлек газовый разряд при малом давлении. При этих условиях в газоразрядной трубке создавались потоки очень быстрых электронов. В то время их называли катодными лучами. Природа этих лучей еще не была с достоверностью установлена. Известно было лишь, что эти лучи берут начало на катоде трубки. Рентген Вильгельм (1845-1923) - немецкий физик, отрывший в 1895 г. коротковолновое электромагнитное излучение - рентгеновские лучи.

Cлайд 3

Открытие рентгеновских лучей Занявшись исследованием катодных лучей, Рентген заметил, что фотопластинка вблизи разрядной трубки оказывалась засвеченной даже в том случае, когда она была завернута в черную бумагу. После этого ему удалось наблюдать еще одно очень поразившее его явление. Бумажный экран, смоченный раствором платиносинеродистого бария, начинал светиться, если им обертывалась разрядная трубка. Причем когда Рентген держал руку между трубкой и экраном, то на экране были видны темные тени костей на фоне более светлых очертаний всей кисти руки. Ученый понял, что при работе разрядной трубки возникает какое-то неизвестное ранее сильно проникающее излучение. Он назвал его Х-лучами. Впоследствии за этим излучением прочно укрепился термин «рентгеновские лучи». Рентген обнаружил, что новое излучение появлялось в том месте, где катодные лучи (потоки быстрых электронов) сталкивались со стеклянной стенкой трубки. В этом месте стекло светилось зеленоватым светом. Последующие опыты показали, что Х-лучи возникают при торможении быстрых электронов любым препятствием, в частности металлическими электродами.

Cлайд 4

Свойства рентгеновских лучей Лучи, открытые Рентгеном, действовали на фотопластинку, вызывали ионизацию воздуха, но заметным образом не отражались от каких-либо веществ и не испытывали преломления. Электромагнитное поле не оказывало никакого влияния на направление их распространения. Сразу же возникло предположение, что рентгеновские лучи – это электромагнитные волны, которые излучаются при резком торможении электронов. В отличие от световых лучей видимого участка спектра и ультрафиолетовых лучей рентгеновские лучи имеют гораздо меньшую длину волны. Их длина волны тем меньше, чем больше энергия электронов, сталкивающихся с препятствием. Большая проникающая способность рентгеновских лучей и прочие их особенности связывались именно с малой длиной волны. Но эта гипотеза нуждалась в доказательствах, и доказательства были получены спустя 15 лет после смерти Рентгена.

Cлайд 5

Дифракция рентгеновских лучей Если рентгеновское излучение представляет собой электромагнитные волны, то оно должно обнаруживать дифракцию – явление, присущее всем видам волн. Сначала пропускали рентгеновские лучи через очень узкие щели в свинцовых пластинках, но ничего похожего на дифракцию обнаружить не удавалось. Немецкий физик Макс Лауэ предположил, что длина волны рентгеновских лучей слишком мала для того, чтобы можно было обнаружить дифракцию этих волн на искусственно созданных препятствиях. Ведь нельзя сделать щели размером 10-8 см, поскольку таков размер самих атомов. А что если рентгеновские лучи имеют примерно такую же длину волны? Тогда остается единственная возможность - использовать кристаллы. Они представляют собой упорядоченные структуры, в которых расстояния между отдельными атомами по порядку величины равны размеру самих атомов, т. е. 10-8 см. Кристалл с его периодической структурой и есть то естественное устройство, которое неизбежно должно вызвать заметную дифракцию волн, если длина их близка к размерам атомов.

Cлайд 6

Дифракция рентгеновских лучей Узкий пучок рентгеновских лучей был направлен на кристалл, за которым была расположена фотопластинка. Результат полностью согласовался с самыми оптимистическими ожиданиями. Наряду с большим центральным пятном, которое давали лучи, распространяющиеся по прямой, возникли регулярно расположенные небольшие пятнышки вокруг центрального пятна (рис.1). Появление этих пятнышек можно было объяснить только дифракцией рентгеновских лучей на упорядоченной структуре кристалла. Исследование дифракционной картины позволило определить длину волны рентгеновских лучей. Она оказалась меньше длины волны ультрафиолетового излучения и по порядку величины была равна размерам атома (10-8 см). Рис.1

Cлайд 7

Применение рентгеновских лучей Рентгеновские лучи нашли себе много очень важных практических применений. В медицине они применяются для постановки правильного диагноза заболевания, а также для лечения раковых заболеваний. Весьма обширны применения рентгеновских лучей в научных исследованиях. По дифракционной картине, даваемой рентгеновскими лучами при их прохождении сквозь кристаллы, удается установить порядок расположения атомов в пространстве - структуру кристаллов. С помощью рентгеноструктурного анализа удается расшифровать строение сложнейших органических соединений, включая белки. В частности, была определена структура молекулы гемоглобина, содержащей десятки тысяч атомов. Эти достижения стали возможными благодаря тому, что длина волны рентгеновских лучей очень мала, - именно поэтому удалось «увидеть» молекулярные структуры. Из других применений рентгеновских лучей отметим рентгеновскую дефектоскопию - метод обнаружения раковин в отливках, трещин в рельсах, проверки качества сварных швов и т. д. Рентгеновская дефектоскопия, основана на изменении поглощения рентгеновских лучей в изделии при наличии в нем полости или инородных включений.

Cлайд 8

Устройство рентгеновской трубки В настоящее время для получения рентгеновских лучей разработаны весьма совершенные устройства, называемые рентгеновскими трубками. На рис. 2 изображена упрощенная схема электронной рентгеновской трубки. Катод 1 представляет собой вольфрамовую спираль, испускающую электроны за счет термоэлектронной эмиссии. Цилиндр 3 фокусирует поток электронов, которые затем соударяются с металлическим электродом (анодом) 2. При этом рождаются рентгеновские лучи. Напряжение между анодом и катодом достигает нескольких десятков киловольт. В трубке создается глубокий вакуум; давление газа в ней не превышает 10-5 мм рт. ст. В мощных рентгеновских трубках анод охлаждается проточной водой, так как при торможении электронов выделяется большое количество теплоты. В полезное излучение превращается лишь около 3% энергии электронов. Рис.2