Formula pentru numărul unei progresii aritmetice. Progresie aritmetică. Ce este o progresie aritmetică

Dacă pentru fiecare număr natural n potrivește un număr real un n , atunci ei spun că este dat succesiune de numere :

o 1 , o 2 , o 3 , . . . , un n , . . . .

Deci, secvența de numere este o funcție a argumentului natural.

Număr o 1 numit primul termen al secvenței , număr o 2 al doilea termen al secvenței , număr o 3 treilea și așa mai departe. Număr un n numit al n-lea termen secvente , și un număr natural nnumărul lui .

Din doi membri alăturați un n Şi un n +1 membru al secvenței un n +1 numit ulterior (față de un n ), A un n anterior (față de un n +1 ).

Pentru a defini o secvență, trebuie să specificați o metodă care vă permite să găsiți un membru al secvenței cu orice număr.

Adesea secvența este specificată folosind formule al n-lea termen , adică o formulă care vă permite să determinați un membru al unei secvențe după numărul acesteia.

De exemplu,

o succesiune de numere impare pozitive poate fi dată prin formula

un n= 2n- 1,

iar succesiunea alternării 1 Şi -1 - formula

b n = (-1)n +1 .

Secvența poate fi determinată formulă recurentă, adică o formulă care exprimă orice membru al secvenței, începând cu unii, prin membrii anteriori (unul sau mai mulți).

De exemplu,

Dacă o 1 = 1 , A un n +1 = un n + 5

o 1 = 1,

o 2 = o 1 + 5 = 1 + 5 = 6,

o 3 = o 2 + 5 = 6 + 5 = 11,

o 4 = o 3 + 5 = 11 + 5 = 16,

o 5 = o 4 + 5 = 16 + 5 = 21.

Dacă a 1= 1, a 2 = 1, un n +2 = un n + un n +1 , atunci primii șapte termeni ai șirului numeric se stabilesc după cum urmează:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

un 5 = a 3 + a 4 = 2 + 3 = 5,

o 6 = o 4 + o 5 = 3 + 5 = 8,

o 7 = o 5 + o 6 = 5 + 8 = 13.

Secvențele pot fi final Şi fără sfârşit .

Secvența este numită final , dacă are un număr finit de membri. Secvența este numită fără sfârşit , dacă are infinit de membri.

De exemplu,

succesiune de numere naturale din două cifre:

10, 11, 12, 13, . . . , 98, 99

final.

Succesiunea numerelor prime:

2, 3, 5, 7, 11, 13, . . .

fără sfârşit.

Secvența este numită crescând , dacă fiecare dintre membrii săi, începând cu al doilea, este mai mare decât precedentul.

Secvența este numită în scădere , dacă fiecare dintre membrii săi, începând cu al doilea, este mai mic decât precedentul.

De exemplu,

2, 4, 6, 8, . . . , 2n, . . . — succesiune crescătoare;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . — secvență descrescătoare.

O succesiune ale cărei elemente nu scad pe măsură ce numărul crește sau, dimpotrivă, nu cresc, se numește succesiune monotonă .

Secvențele monotone, în special, sunt secvențe crescătoare și secvențe descrescătoare.

Progresie aritmetică

Progresie aritmetică este o succesiune în care fiecare membru, începând de la al doilea, este egal cu precedentul, la care se adaugă același număr.

o 1 , o 2 , o 3 , . . . , un n, . . .

este o progresie aritmetică dacă pentru orice număr natural n conditia este indeplinita:

un n +1 = un n + d,

Unde d - un anumit număr.

Astfel, diferența dintre termenii următori și anteriori unui dat progresie aritmetică mereu constant:

a 2 - o 1 = a 3 - o 2 = . . . = un n +1 - un n = d.

Număr d numit diferența de progresie aritmetică.

Pentru a defini o progresie aritmetică, este suficient să indicați primul său termen și diferența.

De exemplu,

Dacă o 1 = 3, d = 4 , atunci găsim primii cinci termeni ai secvenței după cum urmează:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d= 7 + 4 = 11,

a 4 = a 3 + d= 11 + 4 = 15,

o 5 = o 4 + d= 15 + 4 = 19.

Pentru o progresie aritmetică cu primul termen o 1 si diferenta d ei n

un n = a 1 + (n- 1)d.

De exemplu,

găsiți al treizecilea termen al progresiei aritmetice

1, 4, 7, 10, . . .

a 1 =1, d = 3,

un 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

un n-1 = a 1 + (n- 2)d,

un n= a 1 + (n- 1)d,

un n +1 = o 1 + nd,

atunci evident

un n=
a n-1 + a n+1
2

Fiecare membru al unei progresii aritmetice, pornind de la al doilea, este egal cu media aritmetica a membrilor precedenti si urmatori.

numerele a, b și c sunt termeni succesivi ai unei progresii aritmetice dacă și numai dacă unul dintre ei este egal cu media aritmetică a celorlalte două.

De exemplu,

un n = 2n- 7 , este o progresie aritmetică.

Să folosim afirmația de mai sus. Avem:

un n = 2n- 7,

un n-1 = 2(n- 1) - 7 = 2n- 9,

un n+1 = 2(n+ 1) - 7 = 2n- 5.

Prin urmare,

a n+1 + a n-1
=
2n- 5 + 2n- 9
= 2n- 7 = un n,
2
2

Rețineți că n Al treilea termen al unei progresii aritmetice poate fi găsit nu numai prin o 1 , dar și orice anterioară un k

un n = un k + (n- k)d.

De exemplu,

Pentru o 5 poate fi notat

un 5 = a 1 + 4d,

un 5 = a 2 + 3d,

un 5 = a 3 + 2d,

un 5 = a 4 + d.

un n = un n-k + kd,

un n = un n+k - kd,

atunci evident

un n=
o n-k +a n+k
2

orice membru al unei progresii aritmetice, începând de la al doilea, este egal cu jumătate din suma membrilor acestei progresii aritmetice distanțate egal de acesta.

În plus, pentru orice progresie aritmetică este valabilă următoarea egalitate:

a m + a n = a k + a l,

m + n = k + l.

De exemplu,

în progresie aritmetică

1) o 10 = 28 = (25 + 31)/2 = (o 9 + o 11 )/2;

2) 28 = un 10 = a 3 + 7d= 7 + 7 3 = 7 + 21 = 28;

3) un 10= 28 = (19 + 37)/2 = (a 7 + a 13)/2;

4) a 2 + a 12 = a 5 + a 9, deoarece

a 2 + a 12= 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 + . . .+ un n,

primul n termenii unei progresii aritmetice este egal cu produsul dintre jumătate din suma termenilor extremi și numărul de termeni:

De aici, în special, rezultă că dacă trebuie să însumați termenii

un k, un k +1 , . . . , un n,

atunci formula anterioară își păstrează structura:

De exemplu,

în progresie aritmetică 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Dacă este dată o progresie aritmetică, atunci cantitățile o 1 , un n, d, nŞiS n legate prin două formule:

Prin urmare, dacă sunt date valorile a trei dintre aceste mărimi, atunci valorile corespunzătoare ale celorlalte două mărimi sunt determinate din aceste formule, combinate într-un sistem de două ecuații cu două necunoscute.

O progresie aritmetică este o succesiune monotonă. În acest caz:

  • Dacă d > 0 , atunci este în creștere;
  • Dacă d < 0 , atunci este în scădere;
  • Dacă d = 0 , atunci secvența va fi staționară.

Progresie geometrică

Progresie geometrică este o succesiune în care fiecare membru, începând de la al doilea, este egal cu precedentul înmulțit cu același număr.

b 1 , b 2 , b 3 , . . . , b n, . . .

este o progresie geometrică dacă pentru orice număr natural n conditia este indeplinita:

b n +1 = b n · q,

Unde q ≠ 0 - un anumit număr.

Astfel, raportul dintre termenul următor al unei progresii geometrice date și cel precedent este un număr constant:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q.

Număr q numit numitorul progresiei geometrice.

Pentru a defini o progresie geometrică, este suficient să indicați primul său termen și numitorul.

De exemplu,

Dacă b 1 = 1, q = -3 , atunci găsim primii cinci termeni ai secvenței după cum urmează:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q= -3 · (-3) = 9,

b 4 = b 3 · q= 9 · (-3) = -27,

b 5 = b 4 · q= -27 · (-3) = 81.

b 1 și numitorul q ei n Al treilea termen poate fi găsit folosind formula:

b n = b 1 · qn -1 .

De exemplu,

găsiți al șaptelea termen al progresiei geometrice 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 2 6 = 64.

b n-1 = b 1 · qn -2 ,

b n = b 1 · qn -1 ,

b n +1 = b 1 · qn,

atunci evident

b n 2 = b n -1 · b n +1 ,

fiecare membru al progresiei geometrice, incepand de la al doilea, este egal cu media geometrica (proportionala) a membrelor precedente si urmatoare.

Întrucât este și inversul adevărat, următoarea afirmație este valabilă:

numerele a, b și c sunt termeni succesivi ai unei progresii geometrice dacă și numai dacă pătratul unuia dintre ele este egal cu produsul celorlalte două, adică unul dintre numere este media geometrică a celorlalte două.

De exemplu,

Să demonstrăm că șirul dat de formulă b n= -3 · 2 n , este o progresie geometrică. Să folosim afirmația de mai sus. Avem:

b n= -3 · 2 n,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Prin urmare,

b n 2 = (-3 2 n) 2 = (-3 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

care dovedeşte afirmaţia dorită.

Rețineți că n Al treilea termen al unei progresii geometrice poate fi găsit nu numai prin b 1 , dar și orice membru anterior b k , pentru care este suficient să folosiți formula

b n = b k · qn - k.

De exemplu,

Pentru b 5 poate fi notat

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q 2,

b 5 = b 4 · q.

b n = b k · qn - k,

b n = b n - k · q k,

atunci evident

b n 2 = b n - k· b n + k

pătratul oricărui termen al unei progresii geometrice, începând cu al doilea, este egal cu produsul termenilor egal distanțați ai acestei progresii.

În plus, pentru orice progresie geometrică egalitatea este adevărată:

b m· b n= b k· b l,

m+ n= k+ l.

De exemplu,

în progresie geometrică

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , deoarece

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

primul n membrii unei progresii geometrice cu numitor q 0 calculat prin formula:

Și când q = 1 - conform formulei

S n= nb 1

Rețineți că, dacă trebuie să însumați termenii

b k, b k +1 , . . . , b n,

atunci se folosește formula:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - qn - k +1
.
1 - q

De exemplu,

în progresie geometrică 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Dacă este dată o progresie geometrică, atunci mărimile b 1 , b n, q, nŞi S n legate prin două formule:

Prin urmare, dacă sunt date valorile oricărei trei dintre aceste mărimi, atunci valorile corespunzătoare ale celorlalte două mărimi sunt determinate din aceste formule, combinate într-un sistem de două ecuații cu două necunoscute.

Pentru o progresie geometrică cu primul termen b 1 și numitorul q au loc următoarele proprietățile monotonității :

  • progresia crește dacă este îndeplinită una dintre următoarele condiții:

b 1 > 0 Şi q> 1;

b 1 < 0 Şi 0 < q< 1;

  • Progresia este în scădere dacă este îndeplinită una dintre următoarele condiții:

b 1 > 0 Şi 0 < q< 1;

b 1 < 0 Şi q> 1.

Dacă q< 0 , atunci progresia geometrică este alternativă: termenii săi cu numere impare au același semn ca primul său termen, iar termenii cu numere pare au semnul opus. Este clar că o progresie geometrică alternativă nu este monotonă.

Produsul primului n termenii unei progresii geometrice pot fi calculati folosind formula:

P n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) n / 2 .

De exemplu,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Progresie geometrică în scădere infinită

Progresie geometrică în scădere infinită numită progresie geometrică infinită al cărei modul numitor este mai mic 1 , adică

|q| < 1 .

Rețineți că o progresie geometrică infinit descrescătoare poate să nu fie o succesiune descrescătoare. Se potrivește ocaziei

1 < q< 0 .

Cu un astfel de numitor, succesiunea este alternativă. De exemplu,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Suma unei progresii geometrice infinit descrescătoare numiți numărul de care se apropie fără limită suma primelor n membrii unei progresii cu o creștere nelimitată a numărului n . Acest număr este întotdeauna finit și este exprimat prin formula

S= b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

De exemplu,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Relația dintre progresiile aritmetice și geometrice

Progresiile aritmetice și geometrice sunt strâns legate. Să ne uităm la doar două exemple.

o 1 , o 2 , o 3 , . . . d , Asta

b a 1 , b a 2 , b a 3 , . . . b d .

De exemplu,

1, 3, 5, . . . - progresie aritmetica cu diferenta 2 Şi

7 1 , 7 3 , 7 5 , . . . - progresie geometrică cu numitor 7 2 .

b 1 , b 2 , b 3 , . . . - progresie geometrică cu numitor q , Asta

log a b 1, log a b 2, log a b 3, . . . - progresie aritmetica cu diferenta log aq .

De exemplu,

2, 12, 72, . . . - progresie geometrică cu numitor 6 Şi

lg 2, lg 12, lg 72, . . . - progresie aritmetica cu diferenta lg 6 .

Probleme privind progresia aritmetică existau deja în cele mai vechi timpuri. Au apărut și au cerut o soluție pentru că aveau o nevoie practică.

Deci, într-unul din papirusuri Egiptul antic„, care are un conținut matematic – papirusul Rhind (sec. XIX î.Hr.) – conține următoarea sarcină: împărți zece măsuri de pâine între zece persoane, cu condiția ca diferența dintre fiecare dintre ele să fie de o opteme din măsură”.

Și în lucrările de matematică ale grecilor antici există teoreme elegante legate de progresia aritmetică. Astfel, Hypsicles din Alexandria (secolul al II-lea, care a compilat multe probleme interesante și a adăugat cartea a XIV-a la Elementele lui Euclid), a formulat gândul: „Într-o progresie aritmetică, care a număr par termeni, suma termenilor din a doua jumătate este mai mare decât suma termenilor din prima jumătate cu pătratul a 1/2 din numărul de termeni.”

Secvența este notată cu un. Numerele unei secvențe se numesc membrii ei și sunt de obicei desemnate prin litere cu indici care indică numărul de serie al acestui membru (a1, a2, a3 ... citiți: „a 1st”, „a 2nd”, „a 3rd” și așa mai departe ).

Secvența poate fi infinită sau finită.

Ce este o progresie aritmetică? Prin ea înțelegem pe cel obținut prin adăugarea termenului anterior (n) cu același număr d, care este diferența de progresie.

Dacă d<0, то мы имеем убывающую прогрессию. Если d>0, atunci această progresie este considerată în creștere.

O progresie aritmetică se numește finită dacă sunt luați în considerare doar primii săi termeni. Cu un număr foarte mare de membri, acest lucru este deja progresie nesfârșită.

Orice progresie aritmetică este definită de următoarea formulă:

an =kn+b, în ​​timp ce b și k sunt niște numere.

Afirmația opusă este absolut adevărată: dacă o secvență este dată de o formulă similară, atunci este exact o progresie aritmetică care are proprietățile:

  1. Fiecare termen al progresiei este media aritmetică a termenului anterior și a celui următor.
  2. Revers: dacă, începând cu al 2-lea, fiecare termen este media aritmetică a termenului anterior și a celui următor, i.e. dacă condiția este îndeplinită, atunci această secvență este o progresie aritmetică. Această egalitate este în același timp un semn al progresiei, de aceea este de obicei numită o proprietate caracteristică a progresiei.
    În același mod, teorema care reflectă această proprietate este adevărată: o secvență este o progresie aritmetică numai dacă această egalitate este adevărată pentru oricare dintre termenii șirului, începând cu al 2-lea.

Proprietatea caracteristică pentru oricare patru numere ale unei progresii aritmetice poate fi exprimată prin formula an + am = ak + al, dacă n + m = k + l (m, n, k sunt numere de progresie).

Într-o progresie aritmetică, orice termen necesar (N-lea) poate fi găsit folosind următoarea formulă:

De exemplu: primul termen (a1) dintr-o progresie aritmetică este dat și egal cu trei, iar diferența (d) este egală cu patru. Trebuie să găsiți al patruzeci și cincilea termen al acestei progresii. a45 = 1+4(45-1)=177

Formula an = ak + d(n - k) ne permite să determinăm al n-lea termen o progresie aritmetică prin oricare dintre termenii săi, cu condiția să fie cunoscută.

Suma termenilor unei progresii aritmetice (adică primii n termeni ai unei progresii finite) se calculează după cum urmează:

Sn = (a1+an) n/2.

Dacă primul termen este de asemenea cunoscut, atunci o altă formulă este convenabilă pentru calcul:

Sn = ((2a1+d(n-1))/2)*n.

Suma unei progresii aritmetice care conține n termeni se calculează după cum urmează:

Alegerea formulelor pentru calcule depinde de condițiile problemelor și de datele inițiale.

Serii naturale ale oricăror numere, cum ar fi 1,2,3,...,n,...- cel mai simplu exemplu progresie aritmetică.

Pe lângă progresia aritmetică, există și o progresie geometrică, care are proprietăți și caracteristici proprii.

I. V. Yakovlev | Materiale de matematică | MathUs.ru

Progresie aritmetică

O progresie aritmetică este un tip special de secvență. Prin urmare, înainte de a defini progresia aritmetică (și apoi geometrică), trebuie să discutăm pe scurt conceptul important de secvență de numere.

Urmare

Imaginează-ți un dispozitiv pe ecranul căruia anumite numere sunt afișate unul după altul. Să spunem 2; 7; 13; 1; 6; 0; 3; : : : Acest set de numere este tocmai un exemplu de succesiune.

Definiţie. O secvență de numere este un set de numere în care fiecărui număr i se poate atribui un număr unic (adică asociat cu un singur număr natural)1. Numărul n se numește al n-lea termen al șirului.

Deci, în exemplul de mai sus, primul număr este 2, acesta este primul membru al secvenței, care poate fi notat cu a1; numărul cinci are numărul 6 este al cincilea termen al șirului, care poate fi notat cu a5. În general, al n-lea termen al unei secvențe este notat cu un (sau bn, cn etc.).

O situație foarte convenabilă este atunci când al n-lea termen al secvenței poate fi specificat printr-o formulă. De exemplu, formula an = 2n 3 specifică succesiunea: 1; 1; 3; 5; 7; : : : Formula an = (1)n specifică succesiunea: 1; 1; 1; 1; : : :

Nu orice set de numere este o secvență. Astfel, un segment nu este o succesiune; conține „prea multe” numere pentru a fi renumerotate. Mulțimea R a tuturor numere reale nici nu este o secvență. Aceste fapte sunt dovedite în cursul analizei matematice.

Progresia aritmetică: definiții de bază

Acum suntem gata să definim o progresie aritmetică.

Definiţie. O progresie aritmetică este o succesiune în care fiecare termen (începând cu al doilea) egal cu suma termenul anterior și un număr fix (numit diferența unei progresii aritmetice).

De exemplu, secvența 2; 5; 8; 11; : : : este o progresie aritmetică cu primul termen 2 și diferența 3. Secvența 7; 2; 3; 8; : : : este o progresie aritmetică cu primul termen 7 și diferența 5. Secvența 3; 3; 3; : : : este o progresie aritmetică cu o diferență egală cu zero.

Definiție echivalentă: o secvență an se numește progresie aritmetică dacă diferența an+1 an este o valoare constantă (independentă de n).

O progresie aritmetică se numește crescătoare dacă diferența este pozitivă și descrescătoare dacă diferența este negativă.

1 Dar iată o definiție mai concisă: o succesiune este o funcție definită pe mulțimea numerelor naturale. De exemplu, o succesiune de numere reale este funcția f: N ! R.

În mod implicit, secvențele sunt considerate infinite, adică care conțin un număr infinit de numere. Dar nimeni nu ne deranjează să luăm în considerare secvențe finite; de fapt, orice set finit de numere poate fi numită o secvență finită. De exemplu, secvența finală este 1; 2; 3; 4; 5 este format din cinci numere.

Formula pentru al n-lea termen al unei progresii aritmetice

Este ușor de înțeles că o progresie aritmetică este complet determinată de două numere: primul termen și diferența. Prin urmare, se pune întrebarea: cum, cunoscând primul termen și diferența, găsim un termen arbitrar al unei progresii aritmetice?

Nu este dificil să obțineți formula necesară pentru al n-lea termen al unei progresii aritmetice. Lasă an

progresie aritmetică cu diferență d. Avem:

an+1 = an + d (n = 1; 2; : : :):

În special, scriem:

a2 = a1 + d;

a3 = a2 + d = (a1 + d) + d = a1 + 2d;

a4 = a3 + d = (a1 + 2d) + d = a1 + 3d;

și acum devine clar că formula pentru an este:

an = a1 + (n 1)d:

Problema 1. În progresia aritmetică 2; 5; 8; 11; : : : găsiți formula pentru al n-lea termen și calculați al sutelea termen.

Soluţie. Conform formulei (1) avem:

an = 2 + 3(n 1) = 3n 1:

a100 = 3 100 1 = 299:

Proprietatea și semnul progresiei aritmetice

Proprietatea progresiei aritmetice. În progresie aritmetică an pentru orice

Cu alte cuvinte, fiecare membru al unei progresii aritmetice (începând de la al doilea) este media aritmetică a membrilor săi vecini.

Dovada. Avem:

a n 1 + a n+1

(an d) + (an + d)

care este ceea ce s-a cerut.

Mai mult într-un mod general, progresia aritmetică an satisface egalitatea

a n = a n k + a n+k

pentru orice n > 2 și orice k natural< n. Попробуйте самостоятельно доказать эту формулу тем же самым приёмом, что и формулу (2 ).

Se pare că formula (2) este nu numai necesară, ci și condiție suficientă că succesiunea este o progresie aritmetică.

Semnul progresiei aritmetice. Dacă egalitatea (2) este valabilă pentru toate n > 2, atunci șirul an este o progresie aritmetică.

Dovada. Să rescriem formula (2) după cum urmează:

a n a n 1 = a n+1 a n:

Din aceasta putem vedea că diferența an+1 an nu depinde de n, și asta înseamnă tocmai că șirul an este o progresie aritmetică.

Proprietatea și semnul unei progresii aritmetice pot fi formulate sub forma unui enunț; Pentru comoditate, vom face acest lucru pentru trei numere (aceasta este situația care apare adesea în probleme).

Caracterizarea unei progresii aritmetice. Trei numere a, b, c formează o progresie aritmetică dacă și numai dacă 2b = a + c.

Problema 2. (MSU, Facultatea de Economie, 2007) Trei numere 8x, 3 x2 și 4 în ordinea indicată formează o progresie aritmetică descrescătoare. Găsiți x și indicați diferența acestei progresii.

Soluţie. Prin proprietatea progresiei aritmetice avem:

2(3 x2 ) = 8x 4 , 2x2 + 8x 10 = 0 , x2 + 4x 5 = 0 , x = 1; x = 5:

Dacă x = 1, atunci obținem o progresie descrescătoare de 8, 2, 4 cu o diferență de 6. Dacă x = 5, atunci obținem o progresie crescătoare de 40, 22, 4; acest caz nu este potrivit.

Răspuns: x = 1, diferența este 6.

Suma primilor n termeni ai unei progresii aritmetice

Legenda spune că într-o zi profesorul le-a spus copiilor să găsească suma numerelor de la 1 la 100 și s-a așezat în liniște să citească ziarul. Cu toate acestea, în câteva minute, un băiat a spus că a rezolvat problema. Acesta a fost Carl Friedrich Gauss, în vârstă de 9 ani, mai târziu unul dintre cei mai mari matematicieni din istorie.

Ideea micuțului Gauss a fost următoarea. Lasă

S = 1 + 2 + 3 + : : : + 98 + 99 + 100:

Să scriem această sumă în ordine inversă:

S = 100 + 99 + 98 + : : : + 3 + 2 + 1;

și adăugați aceste două formule:

2S = (1 + 100) + (2 + 99) + (3 + 98) + : : : + (98 + 3) + (99 + 2) + (100 + 1):

Fiecare termen dintre paranteze este egal cu 101 și, prin urmare, există 100 de astfel de termeni

2S = 101 100 = 10100;

Folosim această idee pentru a deriva formula sumei

S = a1 + a2 + : : : + an + a n n: (3)

O modificare utilă a formulei (3) se obține dacă înlocuim formula celui de-al n-lea termen an = a1 + (n 1)d în ea:

2a1 + (n 1)d

Problema 3. Aflați suma tuturor numerelor pozitive din trei cifre divizibile cu 13.

Soluţie. Numerele din trei cifre care sunt multipli ai lui 13 formează o progresie aritmetică, primul termen fiind 104 și diferența fiind 13; Al n-lea termen al acestei progresii are forma:

an = 104 + 13(n 1) = 91 + 13n:

Să aflăm câți termeni conține progresia noastră. Pentru a face acest lucru, să rezolvăm inegalitatea:

un 6 999; 91 + 13n 6 999;

n 6 908 13 = 6911 13; n 6 69:

Deci, sunt 69 de membri în progresul nostru. Folosind formula (4) găsim cantitatea necesară:

S = 2 104 + 68 13 69 = 37674: 2

Tip de lecție:învăţarea de materiale noi.

Obiectivele lecției:

  • extinderea și aprofundarea înțelegerii de către elevi a problemelor rezolvate folosind progresia aritmetică; organizarea activităților de căutare ale elevilor la derivarea formulei pentru suma primilor n termeni ai unei progresii aritmetice;
  • dezvoltarea capacității de a dobândi în mod independent noi cunoștințe și de a utiliza cunoștințele deja dobândite pentru a îndeplini o anumită sarcină;
  • dezvoltarea dorintei si nevoii de generalizare a faptelor obtinute, dezvoltand independenta.

Sarcini:

  • rezuma și sistematiza cunoștințele existente pe tema „Progresia aritmetică”;
  • deduceți formule pentru calcularea sumei primilor n termeni ai unei progresii aritmetice;
  • învață cum să aplici formulele obținute la rezolvarea diferitelor probleme;
  • atrage atenţia elevilor asupra procedeului de aflare a valorii unei expresii numerice.

Echipament:

  • fișe cu sarcini pentru lucrul în grupuri și perechi;
  • fișa de punctaj;
  • prezentare„Progresie aritmetică”.

I. Actualizarea cunoștințelor de bază.

1. Munca independentăîn perechi.

prima varianta:

Definiți progresia aritmetică. Scrieți o formulă de recurență care definește o progresie aritmetică. Vă rugăm să oferiți un exemplu de progresie aritmetică și să indicați diferența acesteia.

a 2-a varianta:

Scrieți formula pentru al n-lea termen al unei progresii aritmetice. Găsiți al 100-lea termen al progresiei aritmetice ( un n}: 2, 5, 8 …
În acest moment, doi elevi partea din spate consiliile pregătesc răspunsuri la aceleași întrebări.
Elevii evaluează munca partenerului lor verificându-le pe tablă. (Se predau foile cu răspunsuri.)

2. Momentul jocului.

Sarcina 1.

Profesor. M-am gândit la o progresie aritmetică. Pune-mi doar două întrebări pentru ca după răspunsuri să poți numi rapid al 7-lea termen al acestei progresii. (1, 3, 5, 7, 9, 11, 13, 15…)

Întrebări de la studenți.

  1. Care este al șaselea termen al progresiei și care este diferența?
  2. Care este al optulea termen al progresiei și care este diferența?

Dacă nu mai există întrebări, atunci profesorul le poate stimula - o „interdicție” pe d (diferență), adică nu este permis să întrebați cu ce este egală diferența. Puteți pune întrebări: cu ce este egal al 6-lea termen al progresiei și cu ce este al 8-lea termen al progresiei?

Sarcina 2.

Pe tablă sunt scrise 20 de numere: 1, 4, 7 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58.

Profesorul stă cu spatele la tablă. Elevii sună numărul, iar profesorul sună imediat numărul în sine. Explicați cum pot face asta?

Profesorul își amintește formula pentru al n-lea trimestru a n = 3n – 2și, înlocuind valorile specificate n, găsește valorile corespunzătoare un n.

II. Stabilirea unei sarcini de învățare.

Îmi propun să rezolv o problemă străveche care datează din mileniul II î.Hr., găsită în papirusurile egiptene.

Sarcină:„Să vi se spună: împărțiți 10 măsuri de orz la 10 persoane, diferența dintre fiecare persoană și vecinul său este de 1/8 din măsură.”

  • Cum este această problemă legată de progresia aritmetică a subiectului? (Fiecare persoană următoare primește 1/8 din măsură în plus, ceea ce înseamnă că diferența este d=1/8, 10 persoane, ceea ce înseamnă n=10.)
  • Ce crezi că înseamnă numărul 10 măsuri? (Suma tuturor termenilor progresiei.)
  • Ce altceva trebuie să știți pentru a face ușor și simplu împărțirea orzului în funcție de condițiile problemei? (Primul termen de progresie.)

Obiectivul lecției– obținerea dependenței sumei termenilor progresiei de numărul lor, primul termen și diferența și verificarea dacă problema a fost rezolvată corect în antichitate.

Înainte de a deduce formula, să vedem cum au rezolvat egiptenii antici problema.

Și au rezolvat-o astfel:

1) 10 măsuri: 10 = 1 măsură – cotă medie;
2) 1 măsură ∙ = 2 măsuri – dublată medieîmpărtășește.
Dublat medie cota este suma acțiunilor persoanei a 5-a și a 6-a.
3) 2 masuri – 1/8 masuri = 1 7/8 masuri – dublu fata de persoana a cincea.
4) 1 7/8: 2 = 5/16 – fracțiune de cincime; și așa mai departe, puteți găsi cota fiecărei persoane anterioare și ulterioare.

Obținem secvența:

III. Rezolvarea problemei.

1. Lucrați în grupuri

Grupa I: Aflați suma a 20 de numere naturale consecutive: S 20 =(20+1)∙10 =210.

În general

grupa II: Aflați suma numerelor naturale de la 1 la 100 (Legenda lui Micul Gauss).

S 100 = (1+100)∙50 = 5050

Concluzie:

grupa III: Aflați suma numerelor naturale de la 1 la 21.

Rezolvare: 1+21=2+20=3+19=4+18…

Concluzie:

grupa IV: Aflați suma numerelor naturale de la 1 la 101.

Concluzie:

Această metodă de rezolvare a problemelor luate în considerare se numește „Metoda Gauss”.

2. Fiecare grupă prezintă pe tablă soluția problemei.

3. Generalizarea soluțiilor propuse pentru o progresie aritmetică arbitrară:

a 1, a 2, a 3,…, a n-2, a n-1, a n.
S n =a 1 + a 2 + a 3 + a 4 +…+ a n-3 + a n-2 + a n-1 + a n.

Să găsim această sumă folosind un raționament similar:

4. Am rezolvat problema?(Da.)

IV. Înțelegerea și aplicarea primară a formulelor obținute la rezolvarea problemelor.

1. Verificarea soluției unei probleme vechi folosind formula.

2. Aplicarea formulei în rezolvarea diverselor probleme.

3. Exerciții de dezvoltare a capacității de a aplica formule la rezolvarea problemelor.

A) Nr. 613

Dat: ( a n) - progresie aritmetică;

(a n): 1, 2, 3, …, 1500

Găsi: S 1500

Soluţie: , a 1 = 1 și 1500 = 1500,

B) Având în vedere: ( a n) - progresie aritmetică;
(a n): 1, 2, 3, …
S n = 210

Găsi: n
Soluţie:

V. Munca independentă cu verificare reciprocă.

Denis a început să lucreze ca curier. În prima lună, salariul său a fost de 200 de ruble, în fiecare lună următoare a crescut cu 30 de ruble. Cât a câștigat în total într-un an?

Dat: ( a n) - progresie aritmetică;
a 1 = 200, d=30, n=12
Găsi: S 12
Soluţie:

Răspuns: Denis a primit 4380 de ruble pe an.

VI. Instruirea temelor pentru acasă.

  1. Secțiunea 4.3 – învață derivarea formulei.
  2. №№ 585, 623 .
  3. Creați o problemă care poate fi rezolvată folosind formula pentru suma primilor n termeni ai unei progresii aritmetice.

VII. Rezumând lecția.

1. Fișa de punctaj

2. Continuați propozițiile

  • Astăzi la clasă am învățat...
  • Formule invatate...
  • Eu cred că...

3. Puteți găsi suma numerelor de la 1 la 500? Ce metodă veți folosi pentru a rezolva această problemă?

Referințe.

1. Algebră, clasa a IX-a. Manual pentru instituțiile de învățământ general. Ed. G.V. Dorofeeva. M.: „Iluminismul”, 2009.