Tangenta 1 în pi este un caz special. Metode de bază pentru rezolvarea ecuațiilor trigonometrice. Două metode principale de soluție

Lecție și prezentare pe tema: „Rezolvarea ecuațiilor trigonometrice simple”

Materiale suplimentare
Dragi utilizatori, nu uitați să lăsați comentariile, recenziile, urările! Toate materialele au fost verificate de un program antivirus.

Manuale si simulatoare in magazinul online Integral pentru nota 10 din 1C
Rezolvăm probleme de geometrie. Sarcini interactive pentru construirea în spațiu
Mediul software „1C: Mathematical Constructor 6.1”

Ce vom studia:
1. Ce sunt ecuațiile trigonometrice?

3. Două metode principale de rezolvare ecuații trigonometrice.
4. Ecuații trigonometrice omogene.
5. Exemple.

Ce sunt ecuațiile trigonometrice?

Băieți, am studiat deja arcsinus, arccosinus, arctangent și arccotangent. Acum să ne uităm la ecuațiile trigonometrice în general.

Ecuațiile trigonometrice sunt ecuații în care o variabilă este conținută sub semnul unei funcții trigonometrice.

Să repetăm ​​forma rezolvării celor mai simple ecuații trigonometrice:

1)Dacă |a|≤ 1, atunci ecuația cos(x) = a are o soluție:

X= ± arccos(a) + 2πk

2) Dacă |a|≤ 1, atunci ecuația sin(x) = a are o soluție:

3) Dacă |a| > 1, atunci ecuația sin(x) = a și cos(x) = a nu au soluții 4) Ecuația tg(x)=a are o soluție: x=arctg(a)+ πk

5) Ecuația ctg(x)=a are o soluție: x=arcctg(a)+ πk

Pentru toate formulele k este un număr întreg

Cele mai simple ecuații trigonometrice au forma: T(kx+m)=a, T este o funcție trigonometrică.

Exemplu.

Rezolvați ecuațiile: a) sin(3x)= √3/2

Soluţie:

A) Să notăm 3x=t, atunci ne vom rescrie ecuația sub forma:

Soluția acestei ecuații va fi: t=((-1)^n)arcsin(√3 /2)+ πn.

Din tabelul de valori obținem: t=((-1)^n)×π/3+ πn.

Să revenim la variabila noastră: 3x =((-1)^n)×π/3+ πn,

Atunci x= ((-1)^n)×π/9+ πn/3

Răspuns: x= ((-1)^n)×π/9+ πn/3, unde n este un număr întreg. (-1)^n – minus unu la puterea lui n.

Mai multe exemple de ecuații trigonometrice.

Rezolvați ecuațiile: a) cos(x/5)=1 b)tg(3x- π/3)= √3

Soluţie:

A) De data aceasta, să trecem direct la calcularea rădăcinilor ecuației:

X/5= ± arccos(1) + 2πk. Atunci x/5= πk => x=5πk

Răspuns: x=5πk, unde k este un număr întreg.

B) O scriem sub forma: 3x- π/3=arctg(√3)+ πk. Știm că: arctan(√3)= π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

Răspuns: x=2π/9 + πk/3, unde k este un număr întreg.

Rezolvați ecuațiile: cos(4x)= √2/2. Și găsiți toate rădăcinile de pe segment.

Soluţie:

Vom decide în vedere generala ecuația noastră: 4x= ± arccos(√2/2) + 2πk

4x= ± π/4 + 2πk;

X= ± π/16+ πk/2;

Acum să vedem ce rădăcini cad pe segmentul nostru. La k La k=0, x= π/16, suntem în segmentul dat.
Cu k=1, x= π/16+ π/2=9π/16, lovim din nou.
Pentru k=2, x= π/16+ π=17π/16, dar aici nu am lovit, ceea ce înseamnă că pentru k mare, evident, nu vom lovi.

Răspuns: x= π/16, x= 9π/16

Două metode principale de soluție.

Ne-am uitat la cele mai simple ecuații trigonometrice, dar există și altele mai complexe. Pentru rezolvarea acestora se utilizează metoda introducerii unei noi variabile și metoda factorizării. Să ne uităm la exemple.

Să rezolvăm ecuația:

Soluţie:
Pentru a ne rezolva ecuația, vom folosi metoda introducerii unei noi variabile, notând: t=tg(x).

Ca rezultat al înlocuirii obținem: t 2 + 2t -1 = 0

Să găsim rădăcinile ecuației pătratice: t=-1 și t=1/3

Atunci tg(x)=-1 și tg(x)=1/3, obținem cea mai simplă ecuație trigonometrică, să-i găsim rădăcinile.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

Răspuns: x= -π/4+πk; x=arctg(1/3) + πk.

Un exemplu de rezolvare a unei ecuații

Rezolvați ecuații: 2sin 2 (x) + 3 cos(x) = 0

Soluţie:

Să folosim identitatea: sin 2 (x) + cos 2 (x)=1

Ecuația noastră va lua forma: 2-2cos 2 (x) + 3 cos (x) = 0

2 cos 2 (x) - 3 cos(x) -2 = 0

Să introducem înlocuirea t=cos(x): 2t 2 -3t - 2 = 0

Soluția ecuației noastre pătratice este rădăcinile: t=2 și t=-1/2

Atunci cos(x)=2 și cos(x)=-1/2.

Deoarece Cosinusul nu poate lua valori mai mari de unu, atunci cos(x)=2 nu are rădăcini.

Pentru cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

Răspuns: x= ±2π/3 + 2πk

Ecuații trigonometrice omogene.

Definiție: Ecuațiile de forma a sin(x)+b cos(x) se numesc ecuații trigonometrice omogene de gradul I.

Ecuații de formă

ecuații trigonometrice omogene de gradul doi.

Pentru a rezolva o ecuație trigonometrică omogenă de gradul I, împărțiți-o la cos(x): Nu puteți împărți cu cosinus dacă este egal cu zero, să ne asigurăm că nu este cazul:
Fie cos(x)=0, apoi asin(x)+0=0 => sin(x)=0, dar sinusul și cosinusul nu sunt egale cu zero în același timp, obținem o contradicție, deci putem împărți în siguranță cu zero.

Rezolvați ecuația:
Exemplu: cos 2 (x) + sin(x) cos(x) = 0

Soluţie:

Să scoatem factorul comun: cos(x)(c0s(x) + sin (x)) = 0

Apoi trebuie să rezolvăm două ecuații:

Cos(x)=0 și cos(x)+sin(x)=0

Cos(x)=0 la x= π/2 + πk;

Luați în considerare ecuația cos(x)+sin(x)=0 Împărțiți ecuația noastră la cos(x):

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

Răspuns: x= π/2 + πk și x= -π/4+πk

Cum se rezolvă ecuații trigonometrice omogene de gradul doi?
Băieți, respectați întotdeauna aceste reguli!

1. Vezi ce coeficientul este egalși, dacă a=0, atunci ecuația noastră va lua forma cos(x)(bsin(x)+ccos(x)), un exemplu al cărei soluție este pe diapozitivul anterior

2. Dacă a≠0, atunci trebuie să împărțiți ambele părți ale ecuației la cosinusul la pătrat, obținem:


Schimbăm variabila t=tg(x) și obținem ecuația:

Rezolvați exemplul nr.:3

Rezolvați ecuația:
Soluţie:

Să împărțim ambele părți ale ecuației la pătratul cosinus:

Schimbăm variabila t=tg(x): t 2 + 2 t - 3 = 0

Să găsim rădăcinile ecuației pătratice: t=-3 și t=1

Atunci: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

Răspuns: x=-arctg(3) + πk și x= π/4+ πk

Rezolvați exemplul nr.:4

Rezolvați ecuația:

Soluţie:
Să ne transformăm expresia:


Putem rezolva astfel de ecuații: x= - π/4 + 2πk și x=5π/4 + 2πk

Răspuns: x= - π/4 + 2πk și x=5π/4 + 2πk

Rezolvați exemplul nr.:5

Rezolvați ecuația:

Soluţie:
Să ne transformăm expresia:


Să introducem înlocuirea tg(2x)=t:2 2 - 5t + 2 = 0

Soluția ecuației noastre pătratice va fi rădăcinile: t=-2 și t=1/2

Atunci obținem: tg(2x)=-2 și tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

Răspuns: x=-arctg(2)/2 + πk/2 și x=arctg(1/2)/2+ πk/2

Probleme pentru rezolvare independentă.

1) Rezolvați ecuația

A) sin(7x)= 1/2 b) cos(3x)= √3/2 c) cos(-x) = -1 d) tg(4x) = √3 d) ctg(0,5x) = -1,7

2) Rezolvați ecuațiile: sin(3x)= √3/2. Și găsiți toate rădăcinile de pe segmentul [π/2; π].

3) Rezolvați ecuația: cot 2 (x) + 2 cot (x) + 1 =0

4) Rezolvați ecuația: 3 sin 2 (x) + √3sin (x) cos(x) = 0

5) Rezolvați ecuația: 3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6) Rezolvați ecuația: cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

Necesită cunoașterea formulelor de bază ale trigonometriei - suma pătratelor sinusului și cosinusului, expresia tangentei prin sinus și cosinus și altele. Pentru cei care le-au uitat sau nu le cunosc, recomandăm citirea articolului „”.
Deci, cunoaștem formulele trigonometrice de bază, este timpul să le folosim în practică. Rezolvarea ecuațiilor trigonometrice cu abordarea corectă, este o activitate destul de interesantă, cum ar fi, de exemplu, rezolvarea unui cub Rubik.

Pe baza numelui în sine, este clar că o ecuație trigonometrică este o ecuație în care necunoscutul se află sub semnul funcției trigonometrice.
Există așa-numitele ecuații trigonometrice simple. Iată cum arată: sinx = a, cos x = a, tan x = a. Sa luam in considerare cum se rezolvă astfel de ecuații trigonometrice, pentru claritate vom folosi cercul trigonometric deja familiar.

sinx = a

cos x = a

tan x = a

pat x = a

Orice ecuație trigonometrică se rezolvă în două etape: reducem ecuația la cea mai simplă formă și apoi o rezolvăm ca o ecuație trigonometrică simplă.
Există 7 metode principale prin care se rezolvă ecuațiile trigonometrice.

  1. Substituția variabilă și metoda substituției

  2. Rezolvați ecuația 2cos 2 (x + /6) – 3sin( /3 – x) +1 = 0

    Folosind formulele de reducere obținem:

    2cos 2 (x + /6) – 3cos(x + /6) +1 = 0

    Înlocuiește cos(x + /6) cu y pentru a simplifica și a obține ecuația pătratică obișnuită:

    2y 2 – 3y + 1 + 0

    Ale căror rădăcini sunt y 1 = 1, y 2 = 1/2

    Acum să mergem în ordine inversă

    Înlocuim valorile găsite ale lui y și obținem două opțiuni de răspuns:

  3. Rezolvarea ecuațiilor trigonometrice prin factorizare

  4. Cum se rezolvă ecuația sin x + cos x = 1?

    Să mutăm totul la stânga, astfel încât 0 să rămână în dreapta:

    sin x + cos x – 1 = 0

    Să folosim identitățile discutate mai sus pentru a simplifica ecuația:

    sin x - 2 sin 2 (x/2) = 0

    Să factorizăm:

    2sin(x/2) * cos(x/2) - 2 sin 2 (x/2) = 0

    2sin(x/2) * = 0

    Obținem două ecuații

  5. Reducerea la o ecuație omogenă

  6. O ecuație este omogenă față de sinus și cosinus dacă toți termenii ei sunt relativ la sinusul și cosinusul aceleiași puteri ale aceluiași unghi. Pentru a rezolva o ecuație omogenă, procedați după cum urmează:

    a) transferă toți membrii săi în partea stângă;

    b) scoateți toți factorii comuni din paranteze;

    c) egalează toți factorii și parantezele cu 0;

    d) primite între paranteze ecuație omogenăîntr-un grad mai mic, este la rândul său împărțit în sinus sau cosinus la cel mai înalt grad;

    e) rezolvați ecuația rezultată pentru tg.

    Rezolvați ecuația 3sin 2 x + 4 sin x cos x + 5 cos 2 x = 2

    Să folosim formula sin 2 x + cos 2 x = 1 și să scăpăm de cele două deschise din dreapta:

    3sin 2 x + 4 sin x cos x + 5 cos x = 2sin 2 x + 2cos 2 x

    sin 2 x + 4 sin x cos x + 3 cos 2 x = 0

    Împărțire la cos x:

    tg 2 x + 4 tg x + 3 = 0

    Înlocuiți tan x cu y și obțineți o ecuație pătratică:

    y 2 + 4y +3 = 0, ale căror rădăcini sunt y 1 =1, y 2 = 3

    De aici găsim două soluții la ecuația inițială:

    x 2 = arctan 3 + k

  7. Rezolvarea ecuațiilor prin trecerea la jumătate de unghi

  8. Rezolvați ecuația 3sin x – 5cos x = 7

    Să trecem la x/2:

    6sin(x/2) * cos(x/2) – 5cos 2 (x/2) + 5sin 2 (x/2) = 7sin 2 (x/2) + 7cos 2 (x/2)

    Să mutăm totul la stânga:

    2sin 2 (x/2) – 6sin(x/2) * cos(x/2) + 12cos 2 (x/2) = 0

    Împărțire la cos(x/2):

    tg 2 (x/2) – 3tg(x/2) + 6 = 0

  9. Introducerea unghiului auxiliar

  10. Pentru a lua în considerare, luăm o ecuație de forma: a sin x + b cos x = c,

    unde a, b, c sunt niște coeficienți arbitrari, iar x este o necunoscută.

    Să împărțim ambele părți ale ecuației la:

    Acum coeficienții ecuației, conform formulelor trigonometrice, au proprietati sinși cos și anume: modulul lor nu este mai mare de 1 și suma pătratelor = 1. Să le notăm, respectiv, cos și sin, unde - acesta este așa-numitul unghi auxiliar. Atunci ecuația va lua forma:

    cos * sin x + sin * cos x = C

    sau sin(x + ) = C

    Soluția la această ecuație trigonometrică cea mai simplă este

    x = (-1) k * arcsin C - + k, unde

    Trebuie remarcat faptul că notațiile cos și sin sunt interschimbabile.

    Rezolvați ecuația sin 3x – cos 3x = 1

    Coeficienții din această ecuație sunt:

    a = , b = -1, deci împărțiți ambele părți la = 2

Când rezolvi multe probleme matematice , în special cele care apar înainte de clasa a 10-a, este clar definită ordinea acțiunilor efectuate care vor duce la obiectiv. Astfel de probleme includ, de exemplu, liniare și ecuații pătratice, liniară și inegalități pătratice, ecuații fracționale și ecuații care se reduc la pătratice. Principiul rezolvării cu succes a fiecăreia dintre problemele menționate este următorul: trebuie să stabiliți ce tip de problemă rezolvați, să vă amintiți succesiunea necesară de acțiuni care vor duce la rezultatul dorit, adică. răspundeți și urmați acești pași.

Este evident că succesul sau eșecul în rezolvarea unei anumite probleme depinde în principal de cât de corect este determinat tipul de ecuație care se rezolvă, cât de corect este reprodusă succesiunea tuturor etapelor rezolvării acesteia. Desigur, în acest caz este necesar să aveți abilitățile de a efectua transformări și calcule identice.

Situația este diferită cu ecuații trigonometrice. Nu este deloc greu de stabilit faptul că ecuația este trigonometrică. Apar dificultăți la determinarea succesiunii de acțiuni care ar duce la răspunsul corect.

De aspect ecuație este uneori dificil de determinat tipul acesteia. Și fără a cunoaște tipul de ecuație, este aproape imposibil să o alegeți pe cea potrivită dintre câteva zeci de formule trigonometrice.

Pentru a rezolva o ecuație trigonometrică, trebuie să încercați:

1. aduceți toate funcțiile incluse în ecuație la „aceleași unghiuri”;
2. aduceți ecuația la „funcții identice”;
3. factorizează partea stângă a ecuației etc.

Sa luam in considerare metode de bază pentru rezolvarea ecuațiilor trigonometrice.

I. Reducerea la cele mai simple ecuaţii trigonometrice

Diagrama soluției

Pasul 1. Expres functie trigonometrica prin componente cunoscute.

Pasul 2. Găsiți argumentul funcției folosind formulele:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tan x = a; x = arctan a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Pasul 3. Găsiți variabila necunoscută.

Exemplu.

2 cos(3x – π/4) = -√2.

Soluţie.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Răspuns: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Înlocuire variabilă

Diagrama soluției

Pasul 1. Reduceți ecuația la forma algebrică relativ la una din funcţiile trigonometrice.

Pasul 2. Notați funcția rezultată prin variabila t (dacă este necesar, introduceți restricții asupra t).

Pasul 3. Scrieți și rezolvați ecuația algebrică rezultată.

Pasul 4. Faceți o înlocuire inversă.

Pasul 5. Rezolvați cea mai simplă ecuație trigonometrică.

Exemplu.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Soluţie.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Fie sin (x/2) = t, unde |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 sau e = -3/2, nu satisface condiția |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Răspuns: x = π + 4πn, n Є Z.

III. Metoda de reducere a ordinii ecuațiilor

Diagrama soluției

Pasul 1. A inlocui ecuația dată liniar, folosind formula de reducere a gradului:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Pasul 2. Rezolvați ecuația rezultată folosind metodele I și II.

Exemplu.

cos 2x + cos 2 x = 5/4.

Soluţie.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Răspuns: x = ±π/6 + πn, n Є Z.

IV. Ecuații omogene

Diagrama soluției

Pasul 1. Reduceți această ecuație la forma

a) a sin x + b cos x = 0 (ecuația omogenă de gradul I)

sau la vedere

b) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (ecuația omogenă de gradul doi).

Pasul 2.Împărțiți ambele părți ale ecuației la

a) cos x ≠ 0;

b) cos 2 x ≠ 0;

și obțineți ecuația pentru tan x:

a) a tan x + b = 0;

b) a tan 2 x + b arctan x + c = 0.

Pasul 3. Rezolvați ecuația folosind metode cunoscute.

Exemplu.

5sin 2 x + 3sin x cos x – 4 = 0.

Soluţie.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Fie tg x = t, atunci

t 2 + 3t – 4 = 0;

t = 1 sau t = -4, ceea ce înseamnă

tg x = 1 sau tg x = -4.

Din prima ecuație x = π/4 + πn, n Є Z; din a doua ecuaţie x = -arctg 4 + πk, k Є Z.

Răspuns: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Metoda de transformare a unei ecuații folosind formule trigonometrice

Diagrama soluției

Pasul 1. Folosind toate formulele trigonometrice posibile, reduceți această ecuație la o ecuație rezolvată prin metodele I, II, III, IV.

Pasul 2. Rezolvați ecuația rezultată folosind metode cunoscute.

Exemplu.

sin x + sin 2x + sin 3x = 0.

Soluţie.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) sin 2x (2cos x + 1) = 0;

sin 2x = 0 sau 2cos x + 1 = 0;

Din prima ecuație 2x = π/2 + πn, n Є Z; din a doua ecuație cos x = -1/2.

Avem x = π/4 + πn/2, n Є Z; din a doua ecuație x = ±(π – π/3) + 2πk, k Є Z.

Ca rezultat, x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Răspuns: x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Abilitatea și deprinderea de a rezolva ecuații trigonometrice este foarte important, dezvoltarea lor necesită un efort semnificativ, atât din partea elevului, cât și din partea profesorului.

Multe probleme de stereometrie, fizică etc. sunt asociate cu rezolvarea ecuațiilor trigonometrice Procesul de rezolvare a unor astfel de probleme întruchipează multe dintre cunoștințele și abilitățile care sunt dobândite prin studierea elementelor de trigonometrie.

Ecuațiile trigonometrice ocupă un loc important în procesul de învățare a matematicii și în dezvoltarea personală în general.

Mai ai întrebări? Nu știi cum să rezolvi ecuații trigonometrice?
Pentru a obține ajutor de la un tutor, înregistrați-vă.
Prima lecție este gratuită!

site-ul web, atunci când copiați materialul integral sau parțial, este necesar un link către sursă.


Exemple:

\(2\sin(⁡x) = \sqrt(3)\)
tg\((3x)=-\) \(\frac(1)(\sqrt(3))\)
\(4\cos^2⁡x+4\sin⁡x-1=0\)
\(\cos⁡4x+3\cos⁡2x=1\)

Cum se rezolvă ecuații trigonometrice:

Orice ecuație trigonometrică ar trebui redusă la unul dintre următoarele tipuri:

\(\sin⁡t=a\), \(\cos⁡t=a\), tg\(t=a\), ctg\(t=a\)

unde \(t\) este o expresie cu un x, \(a\) este un număr. Astfel de ecuații trigonometrice se numesc cel mai simplu. Ele pot fi rezolvate cu ușurință folosind () sau formule speciale:


Vedeți infografice despre rezolvarea ecuațiilor trigonometrice simple aici: și.

Exemplu . Rezolvați ecuația trigonometrică \(\sin⁡x=-\)\(\frac(1)(2)\).
Soluţie:

Răspuns: \(\left[ \begin(gathered)x=-\frac(π)(6)+2πk, \\ x=-\frac(5π)(6)+2πn, \end(gathered)\right.\) \(k,n∈Z\)

Ce înseamnă fiecare simbol în formula pentru rădăcinile ecuațiilor trigonometrice, vezi.

Atenţie! Ecuațiile \(\sin⁡x=a\) și \(\cos⁡x=a\) nu au soluții dacă \(a ϵ (-∞;-1)∪(1;∞)\). Deoarece sinus și cosinus pentru orice x sunt mai mari sau egale cu \(-1\) și mai mici sau egale cu \(1\):

\(-1≤\sin x≤1\) \(-1≤\cos⁡x≤1\)

Exemplu . Rezolvați ecuația \(\cos⁡x=-1,1\).
Soluţie: \(-1,1<-1\), а значение косинуса не может быть меньше \(-1\). Значит у уравнения нет решения.
Răspuns : fara solutii.


Exemplu . Rezolvați ecuația trigonometrică tg\(⁡x=1\).
Soluţie:

Să rezolvăm ecuația folosind cercul numeric. Pentru aceasta:
1) Construiți un cerc)
2) Construiți axele \(x\) și \(y\) și axa tangentei (trece prin punctul \((0;1)\) paralel cu axa \(y\)).
3) Pe axa tangentei, marcați punctul \(1\).
4) Conectați acest punct și originea coordonatelor - o linie dreaptă.
5) Marcați punctele de intersecție ale acestei drepte și cercul numeric.
6) Să semnăm valorile acestor puncte: \(\frac(π)(4)\) ,\(\frac(5π)(4)\)
7) Notați toate valorile acestor puncte. Deoarece sunt situate la o distanță de exact \(π\) unele de altele, toate valorile pot fi scrise într-o singură formulă:

Răspuns: \(x=\)\(\frac(π)(4)\) \(+πk\), \(k∈Z\).

Exemplu . Rezolvați ecuația trigonometrică \(\cos⁡(3x+\frac(π)(4))=0\).
Soluţie:


Să folosim din nou cercul numeric.
1) Construiți un cerc, axele \(x\) și \(y\).
2) Pe axa cosinus (axa \(x\)), marcați \(0\).
3) Desenați o perpendiculară pe axa cosinusului prin acest punct.
4) Marcați punctele de intersecție ale perpendicularei și cercului.
5) Să semnăm valorile acestor puncte: \(-\) \(\frac(π)(2)\),\(\frac(π)(2)\).
6) Notăm întreaga valoare a acestor puncte și le echivalăm cu cosinusul (cu ceea ce este în interiorul cosinusului).

\(3x+\)\(\frac(π)(4)\) \(=±\)\(\frac(π)(2)\) \(+2πk\), \(k∈Z\)

\(3x+\)\(\frac(π)(4)\) \(=\)\(\frac(π)(2)\) \(+2πk\) \(3x+\)\(\frac( π)(4)\) \(=-\)\(\frac(π)(2)\) \(+2πk\)

8) Ca de obicei, vom exprima \(x\) în ecuații.
Nu uitați să tratați numerele cu \(π\), precum și cu \(1\), \(2\), \(\frac(1)(4)\), etc. Acestea sunt aceleași numere ca toate celelalte. Fără discriminare numerică!

\(3x=-\)\(\frac(π)(4)\) \(+\)\(\frac(π)(2)\) \(+2πk\) \(3x=-\)\ (\frac(π)(4)\) \(+\)\(\frac(π)(2)\) \(+2πk\)
\(3x=\)\(\frac(π)(4)\) \(+2πk\) \(|:3\) \(3x=-\)\(\frac(3π)(4)\) \(+2πk\) \(|:3\)
\(x=\)\(\frac(π)(12)\) \(+\)\(\frac(2πk)(3)\) \(x=-\)\(\frac(π)( 4)\) \(+\)\(\frac(2πk)(3)\)

Răspuns: \(x=\)\(\frac(π)(12)\) \(+\)\(\frac(2πk)(3)\) \(x=-\)\(\frac(π)( 4)\) \(+\)\(\frac(2πk)(3)\) , \(k∈Z\).

Reducerea ecuațiilor trigonometrice la cea mai simplă este o sarcină creativă aici trebuie să utilizați ambele și metode speciale pentru rezolvarea ecuațiilor:
- Metoda (cea mai populară în cadrul examenului unificat de stat).
- Metoda.
- Metoda argumentelor auxiliare.


Să luăm în considerare un exemplu de rezolvare a ecuației trigonometrice pătratice

Exemplu . Rezolvați ecuația trigonometrică \(2\cos^2⁡x-5\cos⁡x+2=0\)
Soluţie:

\(2\cos^2⁡x-5\cos⁡x+2=0\)

Să facem înlocuirea \(t=\cos⁡x\).

Ecuația noastră a devenit tipică. O poți rezolva folosind .

\(D=25-4 \cdot 2 \cdot 2=25-16=9\)

\(t_1=\)\(\frac(5-3)(4)\) \(=\)\(\frac(1)(2)\) ; \(t_2=\)\(\frac(5+3)(4)\) \(=2\)

Facem o înlocuire inversă.

\(\cos⁡x=\)\(\frac(1)(2)\); \(\cos⁡x=2\)

Rezolvăm prima ecuație folosind cercul numeric.
A doua ecuație nu are soluții deoarece \(\cos⁡x∈[-1;1]\) și nu poate fi egal cu doi pentru orice x.

Să notăm toate numerele care se află în aceste puncte.

Răspuns: \(x=±\)\(\frac(π)(3)\) \(+2πk\), \(k∈Z\).

Un exemplu de rezolvare a unei ecuații trigonometrice cu studiul ODZ:

Exemplu (UTILIZARE) . Rezolvați ecuația trigonometrică \(=0\)

\(\frac(2\cos^2⁡x-\sin(⁡2x))(ctg x)\)\(=0\)

Există o fracție și există o cotangentă - asta înseamnă că trebuie să o notăm. Permiteți-mi să vă reamintesc că o cotangentă este de fapt o fracție:

ctg\(x=\)\(\frac(\cos⁡x)(\sin⁡x)\)

Prin urmare, ODZ pentru ctg\(x\): \(\sin⁡x≠0\).

ODZ: ctg\(x ≠0\); \(\sin⁡x≠0\)

\(x≠±\)\(\frac(π)(2)\) \(+2πk\); \(x≠πn\); \(k,n∈Z\)

Să marchem „non-soluții” pe cercul numeric.

\(\frac(2\cos^2⁡x-\sin(⁡2x))(ctg x)\)\(=0\)

Să scăpăm de numitorul din ecuație înmulțindu-l cu ctg\(x\). Putem face acest lucru, deoarece am scris mai sus că ctg\(x ≠0\).

\(2\cos^2⁡x-\sin⁡(2x)=0\)

Să aplicăm formula unghiului dublu pentru sinus: \(\sin⁡(2x)=2\sin⁡x\cos⁡x\).

\(2\cos^2⁡x-2\sin⁡x\cos⁡x=0\)

Dacă mâinile tale se întind pentru a împărți la cosinus, trage-le înapoi! Puteți împărți la o expresie cu o variabilă dacă cu siguranță nu este egală cu zero (de exemplu, acestea: \(x^2+1.5^x\)). În schimb, să scoatem \(\cos⁡x\) din paranteze.

\(\cos⁡x (2\cos⁡x-2\sin⁡x)=0\)

Să „împărțim” ecuația în două.

\(\cos⁡x=0\); \(2\cos⁡x-2\sin⁡x=0\)

Să rezolvăm prima ecuație folosind cercul numeric. Să împărțim a doua ecuație la \(2\) și să mutăm \(\sin⁡x\) în partea dreaptă.

\(x=±\)\(\frac(π)(2)\) \(+2πk\), \(k∈Z\). \(\cos⁡x=\sin⁡x\)

Rădăcinile rezultate nu sunt incluse în ODZ. Prin urmare, nu le vom scrie ca răspuns.
A doua ecuație este tipică. Să o împărțim la \(\sin⁡x\) (\(\sin⁡x=0\) nu poate fi o soluție a ecuației deoarece în acest caz \(\cos⁡x=1\) sau \(\cos⁡ x=-1\)).

Folosim din nou un cerc.


\(x=\)\(\frac(π)(4)\) \(+πn\), \(n∈Z\)

Aceste rădăcini nu sunt excluse de ODZ, așa că le puteți scrie în răspuns.

Răspuns: \(x=\)\(\frac(π)(4)\) \(+πn\), \(n∈Z\).

Menținerea confidențialității dvs. este importantă pentru noi. Din acest motiv, am dezvoltat o Politică de confidențialitate care descrie modul în care folosim și stocăm informațiile dumneavoastră. Vă rugăm să examinați practicile noastre de confidențialitate și să ne comunicați dacă aveți întrebări.

Colectarea și utilizarea informațiilor personale

Informațiile personale se referă la date care pot fi folosite pentru a identifica sau contacta o anumită persoană.

Vi se poate cere să furnizați informațiile dumneavoastră personale în orice moment când ne contactați.

Mai jos sunt câteva exemple de tipuri de informații personale pe care le putem colecta și cum putem folosi aceste informații.

Ce informații personale colectăm:

  • Când trimiteți o cerere pe site, este posibil să colectăm diverse informații, inclusiv numele dvs., numărul de telefon, adresa de e-mail etc.

Cum folosim informațiile dumneavoastră personale:

  • Informațiile personale pe care le colectăm ne permit să vă contactăm cu oferte unice, promoții și alte evenimente și evenimente viitoare.
  • Din când în când, putem folosi informațiile dumneavoastră personale pentru a trimite notificări și comunicări importante.
  • De asemenea, putem folosi informații personale în scopuri interne, cum ar fi efectuarea de audituri, analize de date și diverse cercetări pentru a îmbunătăți serviciile pe care le oferim și pentru a vă oferi recomandări cu privire la serviciile noastre.
  • Dacă participați la o tragere la sorți, la un concurs sau la o promoție similară, este posibil să folosim informațiile pe care le furnizați pentru a administra astfel de programe.

Dezvăluirea informațiilor către terți

Nu dezvăluim informațiile primite de la dumneavoastră către terți.

Excepții:

  • Dacă este necesar - în conformitate cu legea, procedura judiciară, în procedurile judiciare și/sau pe baza solicitărilor publice sau a solicitărilor din partea autorităților guvernamentale de pe teritoriul Federației Ruse - de a vă dezvălui informațiile personale. De asemenea, putem dezvălui informații despre dumneavoastră dacă stabilim că o astfel de dezvăluire este necesară sau adecvată pentru securitate, aplicarea legii sau alte scopuri de importanță publică.
  • În cazul unei reorganizări, fuziuni sau vânzări, este posibil să transferăm informațiile personale pe care le colectăm terței părți succesoare aplicabile.

Protecția informațiilor personale

Luăm măsuri de precauție - inclusiv administrative, tehnice și fizice - pentru a vă proteja informațiile personale împotriva pierderii, furtului și utilizării greșite, precum și împotriva accesului, dezvăluirii, modificării și distrugerii neautorizate.

Respectarea vieții private la nivelul companiei

Pentru a ne asigura că informațiile dumneavoastră personale sunt în siguranță, comunicăm angajaților noștri standarde de confidențialitate și securitate și aplicăm strict practicile de confidențialitate.