Ecuație pătratică egală cu zero. Ecuații pătratice - exemple cu soluții, caracteristici și formule. Exemple de ecuații pătratice


Continuăm să studiem subiectul „ rezolvarea ecuatiilor" Ne-am familiarizat deja cu ecuațiile liniare și trecem la cunoștință ecuații pătratice.

Mai întâi ne vom uita la ce este o ecuație pătratică și cum este scrisă vedere generală, și dați definiții aferente. După aceasta, vom folosi exemple pentru a examina în detaliu modul în care sunt rezolvate ecuațiile pătratice incomplete. Apoi, să trecem la rezolvarea ecuațiilor complete, să obținem formula rădăcinii și să ne familiarizăm cu discriminantul ecuație pătraticăși luați în considerare soluții exemple tipice. În cele din urmă, să urmărim conexiunile dintre rădăcini și coeficienți.

Navigare în pagină.

Ce este o ecuație pătratică? Tipurile lor

Mai întâi trebuie să înțelegeți clar ce este o ecuație pătratică. Prin urmare, este logic să începem o conversație despre ecuațiile pătratice cu definiția unei ecuații pătratice, precum și definițiile aferente. După aceasta, puteți lua în considerare principalele tipuri de ecuații pătratice: reduse și nereduse, precum și ecuații complete și incomplete.

Definiție și exemple de ecuații pătratice

Definiţie.

Ecuație cuadratică este o ecuație a formei a x 2 +b x+c=0, unde x este o variabilă, a, b și c sunt unele numere, iar a este diferit de zero.

Să spunem imediat că ecuațiile pătratice sunt adesea numite ecuații de gradul doi. Acest lucru se datorează faptului că ecuația pătratică este ecuație algebrică gradul doi.

Definiția menționată ne permite să dăm exemple de ecuații pătratice. Deci 2 x 2 +6 x+1=0, 0,2 x 2 +2,5 x+0,03=0 etc. Acestea sunt ecuații pătratice.

Definiţie.

Numerele a, b și c sunt numite coeficienții ecuației pătratice a·x 2 +b·x+c=0, iar coeficientul a se numește primul, sau cel mai mare, sau coeficientul lui x 2, b este al doilea coeficient sau coeficientul lui x și c este termenul liber .

De exemplu, să luăm o ecuație pătratică de forma 5 x 2 −2 x −3=0, aici coeficientul principal este 5, al doilea coeficient este egal cu −2, iar termenul liber este egal cu −3. Vă rugăm să rețineți că atunci când coeficienții b și/sau c sunt negativi, ca în exemplul dat, forma scurtă a ecuației pătratice este 5 x 2 −2 x−3=0 , mai degrabă decât 5 x 2 +(−2 ) ·x+(−3)=0 .

Este demn de remarcat faptul că, atunci când coeficienții a și/sau b sunt egali cu 1 sau -1, atunci ei nu sunt de obicei prezenți în mod explicit în ecuația pătratică, ceea ce se datorează particularităților scrierii astfel de. De exemplu, în ecuația pătratică y 2 −y+3=0 coeficientul principal este unu, iar coeficientul lui y este egal cu −1.

Ecuații patratice reduse și nereduse

În funcție de valoarea coeficientului conducător, se disting ecuațiile pătratice reduse și nereduse. Să dăm definițiile corespunzătoare.

Definiţie.

Se numește o ecuație pătratică în care coeficientul principal este 1 ecuație pătratică dată. În caz contrar, ecuația pătratică este neatins.

Conform această definiție, ecuații pătratice x 2 −3·x+1=0, x 2 −x−2/3=0 etc. – dat, în fiecare dintre ele primul coeficient este egal cu unu. A 5 x 2 −x−1=0 etc. - ecuații pătratice nereduse, coeficienții lor conducători sunt diferiți de 1.

Din orice ecuație pătratică neredusă, împărțind ambele părți la coeficientul principal, se poate trece la cea redusă. Această acțiune este o transformare echivalentă, adică ecuația pătratică redusă obținută în acest fel are aceleași rădăcini ca și ecuația pătratică neredusă inițială sau, asemenea acesteia, nu are rădăcini.

Să ne uităm la un exemplu despre cum se realizează tranziția de la o ecuație pătratică neredusă la una redusă.

Exemplu.

Din ecuația 3 x 2 +12 x−7=0, mergeți la ecuația pătratică redusă corespunzătoare.

Soluţie.

Trebuie doar să împărțim ambele părți ale ecuației inițiale la coeficientul principal 3, acesta este diferit de zero, astfel încât să putem efectua această acțiune. Avem (3 x 2 +12 x−7):3=0:3, care este același, (3 x 2):3+(12 x):3−7:3=0 și apoi (3: 3) x 2 +(12:3) x−7:3=0, de unde . Așa am obținut ecuația pătratică redusă, care este echivalentă cu cea inițială.

Răspuns:

Ecuații pătratice complete și incomplete

Definiția unei ecuații pătratice conține condiția a≠0. Această condiție este necesară pentru ca ecuația a x 2 + b x + c = 0 să fie pătratică, deoarece atunci când a = 0 devine de fapt o ecuație liniară de forma b x + c = 0.

În ceea ce privește coeficienții b și c, aceștia pot fi egali cu zero, atât individual, cât și împreună. În aceste cazuri, ecuația pătratică se numește incompletă.

Definiţie.

Ecuația pătratică a x 2 +b x+c=0 se numește incomplet, dacă cel puțin unul dintre coeficienții b, c este egal cu zero.

La rândul său

Definiţie.

Ecuație pătratică completă este o ecuație în care toți coeficienții sunt diferiți de zero.

Asemenea nume nu au fost date întâmplător. Acest lucru va deveni clar din discuțiile următoare.

Dacă coeficientul b este zero, atunci ecuația pătratică ia forma a·x 2 +0·x+c=0 și este echivalentă cu ecuația a·x 2 +c=0. Dacă c=0, adică ecuația pătratică are forma a·x 2 +b·x+0=0, atunci poate fi rescrisă ca a·x 2 +b·x=0. Și cu b=0 și c=0 obținem ecuația pătratică a·x 2 =0. Ecuațiile rezultate diferă de ecuația pătratică completă prin aceea că părțile lor din stânga nu conțin nici un termen cu variabila x, nici un termen liber sau ambele. De aici și numele lor - ecuații patratice incomplete.

Deci ecuațiile x 2 +x+1=0 și −2 x 2 −5 x+0,2=0 sunt exemple de ecuații patratice complete, iar x 2 =0, −2 x 2 =0, 5 x 2 +3=0 , −x 2 −5 x=0 sunt ecuații pătratice incomplete.

Rezolvarea ecuațiilor pătratice incomplete

Din informațiile din paragraful anterior rezultă că există trei tipuri de ecuații pătratice incomplete:

  • a·x 2 =0, îi corespund coeficienții b=0 și c=0;
  • a x 2 +c=0 când b=0;
  • şi a·x 2 +b·x=0 când c=0.

Să examinăm în ordine modul în care sunt rezolvate ecuațiile pătratice incomplete ale fiecăruia dintre aceste tipuri.

a x 2 =0

Să începem cu rezolvarea ecuațiilor pătratice incomplete în care coeficienții b și c sunt egali cu zero, adică cu ecuații de forma a x 2 =0. Ecuația a·x 2 =0 este echivalentă cu ecuația x 2 =0, care se obține din original prin împărțirea ambelor părți la un număr diferit de zero a. Evident, rădăcina ecuației x 2 =0 este zero, deoarece 0 2 =0. Această ecuație nu are alte rădăcini, ceea ce se explică prin faptul că pentru orice număr p diferit de zero este valabilă inegalitatea p 2 >0, ceea ce înseamnă că pentru p≠0 egalitatea p 2 =0 nu este niciodată atinsă.

Deci, ecuația pătratică incompletă a·x 2 =0 are o singură rădăcină x=0.

Ca exemplu, dăm soluția ecuației pătratice incomplete −4 x 2 =0. Este echivalent cu ecuația x 2 =0, singura sa rădăcină este x=0, prin urmare, ecuația originală are o singură rădăcină zero.

O soluție scurtă în acest caz poate fi scrisă după cum urmează:
−4 x 2 =0 ,
x 2 =0,
x=0.

a x 2 +c=0

Acum să vedem cum se rezolvă ecuațiile pătratice incomplete în care coeficientul b este zero și c≠0, adică ecuații de forma a x 2 +c=0. Știm că mutarea unui termen dintr-o parte a ecuației în cealaltă cu semnul opus, precum și împărțirea ambelor părți ale ecuației la un număr diferit de zero, dă o ecuație echivalentă. Prin urmare, putem efectua următoarele transformări echivalente ale ecuației pătratice incomplete a x 2 +c=0:

  • mutați c în partea dreaptă, ceea ce dă ecuația a x 2 =−c,
  • și împărțim ambele părți cu a, obținem .

Ecuația rezultată ne permite să tragem concluzii despre rădăcinile sale. În funcție de valorile lui a și c, valoarea expresiei poate fi negativă (de exemplu, dacă a=1 și c=2, atunci) sau pozitivă (de exemplu, dacă a=−2 și c=6, atunci ), nu este zero , deoarece prin condiția c≠0. Să ne uităm la cazuri separat.

Dacă , atunci ecuația nu are rădăcini. Această afirmație rezultă din faptul că pătratul oricărui număr este un număr nenegativ. De aici rezultă că atunci când , atunci pentru orice număr p egalitatea nu poate fi adevărată.

Dacă , atunci situația cu rădăcinile ecuației este diferită. În acest caz, dacă ne amintim despre , atunci rădăcina ecuației devine imediat evidentă, deoarece . Este ușor de ghicit că numărul este și rădăcina ecuației, într-adevăr, . Această ecuație nu are alte rădăcini, care pot fi arătate, de exemplu, prin contradicție. Să facem asta.

Să notăm rădăcinile ecuației tocmai anunțate ca x 1 și −x 1 . Să presupunem că ecuația are încă o rădăcină x 2, diferită de rădăcinile indicate x 1 și −x 1. Se știe că înlocuirea rădăcinilor sale într-o ecuație în loc de x transformă ecuația într-o egalitate numerică corectă. Pentru x 1 și −x 1 avem , iar pentru x 2 avem . Proprietățile egalităților numerice ne permit să efectuăm scăderea termen cu termen a egalităților numerice corecte, astfel încât scăderea părților corespunzătoare ale egalităților dă x 1 2 −x 2 2 =0. Proprietățile operațiilor cu numere ne permit să rescriem egalitatea rezultată ca (x 1 −x 2)·(x 1 +x 2)=0. Știm că produsul a două numere este egal cu zero dacă și numai dacă cel puțin unul dintre ele este egal cu zero. Prin urmare, din egalitatea rezultată rezultă că x 1 −x 2 =0 și/sau x 1 +x 2 =0, care este același, x 2 =x 1 și/sau x 2 =−x 1. Deci am ajuns la o contradicție, deoarece la început am spus că rădăcina ecuației x 2 este diferită de x 1 și −x 1. Aceasta demonstrează că ecuația nu are alte rădăcini decât și .

Să rezumam informațiile din acest paragraf. Ecuația pătratică incompletă a x 2 +c=0 este echivalentă cu ecuația care

  • nu are rădăcini dacă,
  • are două rădăcini și , dacă .

Să luăm în considerare exemple de rezolvare a ecuațiilor pătratice incomplete de forma a·x 2 +c=0.

Să începem cu ecuația pătratică 9 x 2 +7=0. După mutarea termenului liber în partea dreaptă a ecuației, acesta va lua forma 9 x 2 =−7. Împărțind ambele părți ale ecuației rezultate la 9, ajungem la . Deoarece partea dreaptă are un număr negativ, această ecuație nu are rădăcini, prin urmare, ecuația pătratică incompletă inițială 9 x 2 +7 = 0 nu are rădăcini.

Să rezolvăm o altă ecuație pătratică incompletă −x 2 +9=0. Mutăm cele nouă în partea dreaptă: −x 2 =−9. Acum împărțim ambele părți la −1, obținem x 2 =9. În partea dreaptă există un număr pozitiv, din care concluzionăm că sau . Apoi notăm răspunsul final: ecuația pătratică incompletă −x 2 +9=0 are două rădăcini x=3 sau x=−3.

a x 2 +b x=0

Rămâne să ne ocupăm de soluția ultimului tip de ecuații pătratice incomplete pentru c=0. Ecuațiile pătratice incomplete de forma a x 2 + b x = 0 vă permit să rezolvați metoda factorizării. Evident, putem, situat în partea stângă a ecuației, pentru care este suficient să scoatem factorul comun x din paranteze. Acest lucru ne permite să trecem de la ecuația pătratică incompletă inițială la o ecuație echivalentă de forma x·(a·x+b)=0. Și această ecuație este echivalentă cu o mulțime de două ecuații x=0 și a·x+b=0, cea din urmă fiind liniară și având rădăcina x=−b/a.

Deci, ecuația pătratică incompletă a·x 2 +b·x=0 are două rădăcini x=0 și x=−b/a.

Pentru a consolida materialul, vom analiza soluția la un exemplu concret.

Exemplu.

Rezolvați ecuația.

Soluţie.

Scotând x din paranteze rezultă ecuația . Este echivalentă cu două ecuații x=0 și . Rezolvăm ecuația liniară rezultată: , și efectuăm împărțirea număr mixt pe fracție comună, găsim . Prin urmare, rădăcinile ecuației inițiale sunt x=0 și .

După dobândirea practicii necesare, soluțiile la astfel de ecuații pot fi scrise pe scurt:

Răspuns:

x=0, .

Discriminant, formulă pentru rădăcinile unei ecuații pătratice

Pentru a rezolva ecuații pătratice, există o formulă rădăcină. Să-l notăm formula pentru rădăcinile unei ecuații pătratice: , Unde D=b 2 −4 a c- așa-zis discriminant al unei ecuații pătratice. Intrarea înseamnă în esență că .

Este util să știm cum a fost obținută formula rădăcinii și cum este utilizată în găsirea rădăcinilor ecuațiilor pătratice. Să ne dăm seama.

Derivarea formulei pentru rădăcinile unei ecuații pătratice

Trebuie să rezolvăm ecuația pătratică a·x 2 +b·x+c=0. Să efectuăm câteva transformări echivalente:

  • Putem împărți ambele părți ale acestei ecuații la un număr diferit de zero a, rezultând următoarea ecuație pătratică.
  • Acum selectați un pătrat complet pe partea stângă: . După aceasta, ecuația va lua forma .
  • În această etapă, este posibil să transferăm ultimii doi termeni în partea dreaptă cu semnul opus, avem .
  • Și să transformăm și expresia din partea dreaptă: .

Ca rezultat, ajungem la o ecuație care este echivalentă cu ecuația pătratică inițială a·x 2 +b·x+c=0.

Am rezolvat deja ecuații similare ca formă în paragrafele precedente, când am examinat. Acest lucru ne permite să tragem următoarele concluzii cu privire la rădăcinile ecuației:

  • dacă , atunci ecuația nu are soluții reale;
  • dacă , atunci ecuația are forma , prin urmare, , din care este vizibilă singura sa rădăcină;
  • dacă , atunci sau , care este același cu sau , adică ecuația are două rădăcini.

Astfel, prezența sau absența rădăcinilor ecuației și, prin urmare, a ecuației pătratice originale, depinde de semnul expresiei din partea dreaptă. La rândul său, semnul acestei expresii este determinat de semnul numărătorului, întrucât numitorul 4·a 2 este întotdeauna pozitiv, adică de semnul expresiei b 2 −4·a·c. Această expresie b 2 −4 a c a fost numită discriminant al unei ecuații pătraticeși desemnat prin scrisoare D. De aici, esența discriminantului este clară - pe baza valorii și semnului său, ei ajung la concluzia dacă ecuația pătratică are rădăcini reale și, dacă da, care este numărul lor - unul sau doi.

Să revenim la ecuație și să o rescriem folosind notația discriminantă: . Și tragem concluzii:

  • daca D<0 , то это уравнение не имеет действительных корней;
  • dacă D=0, atunci această ecuație are o singură rădăcină;
  • în sfârșit, dacă D>0, atunci ecuația are două rădăcini sau, care pot fi rescrise sub forma sau, iar după extinderea și aducerea fracțiilor la un numitor comun obținem.

Deci am derivat formulele pentru rădăcinile ecuației pătratice, ele au forma , unde discriminantul D este calculat prin formula D=b 2 −4·a·c.

Cu ajutorul lor, cu un discriminant pozitiv, puteți calcula ambele rădăcini reale ale unei ecuații pătratice. Când discriminantul este zero, ambele formule dau aceeași valoare a rădăcinii, corespunzătoare unei soluții unice a ecuației pătratice. Și cu un discriminant negativ, atunci când încercăm să folosim formula pentru rădăcinile unei ecuații pătratice, ne confruntăm cu extragerea rădăcinii pătrate a unui număr negativ, ceea ce ne duce dincolo de sfera de aplicare și programa școlară. Cu un discriminant negativ, ecuația pătratică nu are rădăcini reale, ci are o pereche conjugat complex rădăcini, care pot fi găsite folosind aceleași formule de rădăcină pe care le-am obținut.

Algoritm pentru rezolvarea ecuațiilor pătratice cu ajutorul formulelor rădăcinilor

În practică, atunci când rezolvați ecuații pătratice, puteți utiliza imediat formula rădăcinii pentru a calcula valorile acestora. Dar acest lucru este mai mult legat de găsirea rădăcinilor complexe.

Cu toate acestea, în curs şcolar algebră de obicei despre care vorbim nu despre complex, ci despre rădăcinile reale ale unei ecuații pătratice. În acest caz, este recomandabil, înainte de a folosi formulele pentru rădăcinile unei ecuații pătratice, să găsiți mai întâi discriminantul, să vă asigurați că acesta este nenegativ (în caz contrar, putem concluziona că ecuația nu are rădăcini reale), și abia apoi calculați valorile rădăcinilor.

Raționamentul de mai sus ne permite să scriem algoritm pentru rezolvarea unei ecuații pătratice. Pentru a rezolva ecuația pătratică a x 2 +b x+c=0, trebuie să:

  • folosind formula discriminantă D=b 2 −4·a·c, calculați valoarea acesteia;
  • concluzionați că o ecuație pătratică nu are rădăcini reale dacă discriminantul este negativ;
  • calculați singura rădăcină a ecuației folosind formula dacă D=0;
  • găsiți două rădăcini reale ale unei ecuații pătratice folosind formula rădăcinii dacă discriminantul este pozitiv.

Aici observăm doar că, dacă discriminantul este egal cu zero, puteți folosi și formula aceasta va da aceeași valoare ca .

Puteți trece la exemple de utilizare a algoritmului pentru rezolvarea ecuațiilor pătratice.

Exemple de rezolvare a ecuațiilor pătratice

Să luăm în considerare soluțiile la trei ecuații pătratice cu pozitiv, negativ și egal cu zero discriminant. După ce s-a ocupat de soluția lor, prin analogie va fi posibil să se rezolve orice altă ecuație pătratică. Să începem.

Exemplu.

Aflați rădăcinile ecuației x 2 +2·x−6=0.

Soluţie.

În acest caz, avem următorii coeficienți ai ecuației pătratice: a=1, b=2 și c=−6. Conform algoritmului, mai întâi trebuie să calculați discriminantul pentru a face acest lucru, înlocuim a, b și c indicate în formula discriminantă; D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28. Deoarece 28>0, adică discriminantul este mai mare decât zero, ecuația pătratică are două rădăcini reale. Să le găsim folosind formula rădăcină, obținem , aici puteți simplifica expresiile rezultate făcând deplasarea multiplicatorului dincolo de semnul rădăcinii urmată de reducerea fracției:

Răspuns:

Să trecem la următorul exemplu tipic.

Exemplu.

Rezolvați ecuația pătratică −4 x 2 +28 x−49=0 .

Soluţie.

Începem prin a găsi discriminantul: D=28 2 −4·(−4)·(−49)=784−784=0. Prin urmare, această ecuație pătratică are o singură rădăcină, pe care o găsim ca , adică

Răspuns:

x=3,5.

Rămâne de luat în considerare rezolvarea ecuațiilor pătratice cu un discriminant negativ.

Exemplu.

Rezolvați ecuația 5·y 2 +6·y+2=0.

Soluţie.

Iată coeficienții ecuației pătratice: a=5, b=6 și c=2. Substituim aceste valori în formula discriminantă, avem D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4. Discriminantul este negativ, prin urmare, această ecuație pătratică nu are rădăcini reale.

Dacă trebuie să indicați rădăcini complexe, atunci aplicăm formula binecunoscută pentru rădăcinile unei ecuații pătratice și efectuăm actiuni cu numere complexe :

Răspuns:

nu există rădăcini reale, rădăcini complexe sunt: ​​.

Să remarcăm încă o dată că, dacă discriminantul unei ecuații pătratice este negativ, atunci la școală de obicei notează imediat un răspuns în care indică că nu există rădăcini reale și nu se găsesc rădăcini complexe.

Formula rădăcină pentru chiar al doilea coeficienți

Formula pentru rădăcinile unei ecuații pătratice, unde D=b 2 −4·a·c vă permite să obțineți o formulă de formă mai compactă, permițându-vă să rezolvați ecuații pătratice cu un coeficient par pentru x (sau pur și simplu cu o coeficient având forma 2·n, de exemplu, sau 14·ln5=2·7·ln5). Hai să o scoatem afară.

Să presupunem că trebuie să rezolvăm o ecuație pătratică de forma a x 2 +2 n x+c=0. Să-i găsim rădăcinile folosind formula pe care o cunoaștem. Pentru a face acest lucru, calculăm discriminantul D=(2 n) 2 −4 a c=4 n 2 −4 a c=4 (n 2 −a c), iar apoi folosim formula rădăcină:

Să notăm expresia n 2 −a c ca D 1 (uneori se notează D”). Atunci formula pentru rădăcinile ecuației pătratice luate în considerare cu al doilea coeficient 2 n va lua forma , unde D 1 =n 2 −a·c.

Este ușor de observat că D=4·D 1, sau D 1 =D/4. Cu alte cuvinte, D 1 este a patra parte a discriminantului. Este clar că semnul lui D 1 este același cu semnul lui D . Adică, semnul D 1 este, de asemenea, un indicator al prezenței sau absenței rădăcinilor unei ecuații pătratice.

Deci, pentru a rezolva o ecuație pătratică cu un al doilea coeficient 2·n, aveți nevoie

  • Calculați D 1 =n 2 −a·c ;
  • Dacă D 1<0 , то сделать вывод, что действительных корней нет;
  • Dacă D 1 =0, atunci calculați singura rădăcină a ecuației folosind formula;
  • Dacă D 1 >0, atunci găsiți două rădăcini reale folosind formula.

Să luăm în considerare rezolvarea exemplului folosind formula rădăcină obținută în acest paragraf.

Exemplu.

Rezolvați ecuația pătratică 5 x 2 −6 x −32=0 .

Soluţie.

Al doilea coeficient al acestei ecuații poate fi reprezentat ca 2·(−3) . Adică, puteți rescrie ecuația pătratică inițială sub forma 5 x 2 +2 (−3) x−32=0, aici a=5, n=−3 și c=−32 și calculați a patra parte a discriminant: D 1 =n 2 −a·c=(−3) 2 −5·(−32)=9+160=169. Deoarece valoarea sa este pozitivă, ecuația are două rădăcini reale. Să le găsim folosind formula rădăcină adecvată:

Rețineți că a fost posibil să se folosească formula obișnuită pentru rădăcinile unei ecuații pătratice, dar în acest caz ar trebui efectuată mai multă muncă de calcul.

Răspuns:

Simplificarea formei ecuațiilor pătratice

Uneori, înainte de a începe să calculați rădăcinile unei ecuații pătratice folosind formule, nu strică să puneți întrebarea: „Este posibil să simplificați forma acestei ecuații?” De acord că din punct de vedere al calculelor va fi mai ușor de rezolvat ecuația pătratică 11 x 2 −4 x−6=0 decât 1100 x 2 −400 x−600=0.

De obicei, simplificarea formei unei ecuații pătratice se realizează prin înmulțirea sau împărțirea ambelor părți cu un anumit număr. De exemplu, în paragraful anterior a fost posibilă simplificarea ecuației 1100 x 2 −400 x −600=0 împărțind ambele părți la 100.

O transformare similară este efectuată cu ecuații pătratice, ai căror coeficienți nu sunt . În acest caz, ambele părți ale ecuației sunt de obicei împărțite la valorile absolute ale coeficienților săi. De exemplu, să luăm ecuația pătratică 12 x 2 −42 x+48=0. valorile absolute ale coeficienților săi: GCD(12, 42, 48)= GCD(GCD(12, 42), 48)= GCD(6, 48)=6. Împărțind ambele părți ale ecuației pătratice originale la 6, ajungem la ecuația pătratică echivalentă 2 x 2 −7 x+8=0.

Și înmulțirea ambelor părți ale unei ecuații pătratice se face de obicei pentru a scăpa de coeficienții fracționali. În acest caz, înmulțirea se realizează prin numitorii coeficienților săi. De exemplu, dacă ambele părți ale ecuației pătratice sunt înmulțite cu LCM(6, 3, 1)=6, atunci aceasta va lua forma mai simplă x 2 +4·x−18=0.

În concluzia acestui punct, observăm că ei scapă aproape întotdeauna de minus la cel mai mare coeficient al unei ecuații pătratice prin schimbarea semnelor tuturor termenilor, ceea ce corespunde înmulțirii (sau împărțirii) ambelor părți cu −1. De exemplu, de obicei se trece de la ecuația pătratică −2 x 2 −3 x+7=0 la soluția 2 x 2 +3 x−7=0 .

Relația dintre rădăcini și coeficienți ai unei ecuații pătratice

Formula pentru rădăcinile unei ecuații pătratice exprimă rădăcinile ecuației prin coeficienții săi. Pe baza formulei rădăcinii, puteți obține alte relații între rădăcini și coeficienți.

Cele mai cunoscute și aplicabile formule din teorema lui Vieta sunt de forma și . În special, pentru ecuația pătratică dată, suma rădăcinilor este egală cu al doilea coeficient cu semnul opus, iar produsul rădăcinilor este egal cu termenul liber. De exemplu, prin forma ecuației pătratice 3 x 2 −7 x + 22 = 0 putem spune imediat că suma rădăcinilor sale este egală cu 7/3, iar produsul rădăcinilor este egal cu 22/3.

Folosind formulele deja scrise, puteți obține o serie de alte conexiuni între rădăcinile și coeficienții ecuației pătratice. De exemplu, puteți exprima suma pătratelor rădăcinilor unei ecuații pătratice prin coeficienții ei: .

Referințe.

  • Algebră: manual pentru clasa a VIII-a. educatie generala instituții / [Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova]; editat de S. A. Teliakovsky. - Ed. a XVI-a. - M.: Educație, 2008. - 271 p. : bolnav. - ISBN 978-5-09-019243-9.
  • Mordkovich A.G. Algebră. clasa a 8-a. În 2 ore. Partea 1. Manual pentru studenții instituțiilor de învățământ general / A. G. Mordkovich. - Ed. a XI-a, șters. - M.: Mnemosyne, 2009. - 215 p.: ill. ISBN 978-5-346-01155-2.

„, adică ecuații de gradul I. În această lecție ne vom uita ceea ce se numește ecuație pătratică si cum se rezolva.

Ce este o ecuație pătratică?

Important!

Gradul unei ecuații este determinat de gradul cel mai înalt în care se află necunoscutul.

Dacă puterea maximă în care necunoscuta este „2”, atunci aveți o ecuație pătratică.

Exemple de ecuații pătratice

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x 2 + 0,25x = 0
  • x 2 − 8 = 0

Important! Forma generală a unei ecuații pătratice arată astfel:

A x 2 + b x + c = 0

„a”, „b” și „c” sunt date numere.
  • „a” este primul sau cel mai mare coeficient;
  • „b” este al doilea coeficient;
  • „c” este un membru gratuit.

Pentru a găsi „a”, „b” și „c” trebuie să comparați ecuația cu forma generală a ecuației pătratice „ax 2 + bx + c = 0”.

Să exersăm determinarea coeficienților „a”, „b” și „c” în ecuații patratice.

5x 2 − 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Ecuaţie Cote
  • a = 5
  • b = −14
  • c = 17
  • a = −7
  • b = −13
  • c = 8
1
3
= 0
  • a = −1
  • b = 1
  • c =
    1
    3
x 2 + 0,25x = 0
  • a = 1
  • b = 0,25
  • c = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • c = −8

Cum se rezolvă ecuații cuadratice

Spre deosebire de ecuații liniare pentru a rezolva ecuații pătratice, o specială formula pentru găsirea rădăcinilor.

Ține minte!

Pentru a rezolva o ecuație pătratică aveți nevoie de:

  • aduceți ecuația pătratică la forma generală „ax 2 + bx + c = 0”.
  • Adică, doar „0” ar trebui să rămână în partea dreaptă;

Să ne uităm la un exemplu de utilizare a formulei pentru a găsi rădăcinile unei ecuații pătratice. Să rezolvăm o ecuație pătratică.

X 2 − 3x − 4 = 0


Ecuația „x 2 − 3x − 4 = 0” a fost deja redusă la forma generală „ax 2 + bx + c = 0” și nu necesită simplificări suplimentare. Pentru a o rezolva, trebuie doar să aplicăm formula pentru găsirea rădăcinilor unei ecuații pătratice.

Să determinăm coeficienții „a”, „b” și „c” pentru această ecuație.


x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

Poate fi folosit pentru a rezolva orice ecuație pătratică.

În formula „x 1;2 = ” expresia radicală este adesea înlocuită
„b 2 − 4ac” pentru litera „D” și se numește discriminant. Conceptul de discriminant este discutat mai detaliat în lecția „Ce este un discriminant”.

Să ne uităm la un alt exemplu de ecuație pătratică.

x 2 + 9 + x = 7x

În această formă, este destul de dificil să se determine coeficienții „a”, „b” și „c”. Să reducem mai întâi ecuația la forma generală „ax 2 + bx + c = 0”.

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x 2 + 9 − 6x = 0
x 2 − 6x + 9 = 0

Acum puteți folosi formula pentru rădăcini.

X 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =
x =

6
2

x = 3
Răspuns: x = 3

Există momente când ecuațiile pătratice nu au rădăcini. Această situație apare atunci când formula conține un număr negativ sub rădăcină.

Vă reamintim că o ecuație pătratică completă este o ecuație de forma:

Rezolvarea ecuațiilor pătratice complete este puțin mai dificilă (doar puțin) decât acestea.

Ține minte Orice ecuație pătratică poate fi rezolvată folosind un discriminant!

Chiar incomplet.

Celelalte metode te vor ajuta să o faci mai repede, dar dacă ai probleme cu ecuațiile pătratice, mai întâi stăpânește soluția folosind discriminantul.

1. Rezolvarea ecuațiilor pătratice folosind un discriminant.

Rezolvarea ecuațiilor pătratice folosind această metodă este foarte simplă, principalul lucru este să vă amintiți succesiunea de acțiuni și câteva formule.

Dacă, atunci ecuația are 2 rădăcini. Trebuie atenție deosebită treceți la pasul 2.

Discriminantul D ne spune numărul de rădăcini ale ecuației.

  • Dacă, atunci formula din pas se va reduce la. Astfel, ecuația va avea doar o rădăcină.
  • Dacă, atunci nu vom putea extrage rădăcina discriminantului la pas. Aceasta indică faptul că ecuația nu are rădăcini.

Să ne întoarcem la sens geometric ecuație pătratică.

Graficul funcției este o parabolă:

Să ne întoarcem la ecuațiile noastre și să vedem câteva exemple.

Exemplul 9

Rezolvați ecuația

Pasul 1 sărim.

Pasul 2.

Găsim discriminantul:

Aceasta înseamnă că ecuația are două rădăcini.

Pasul 3.

Răspuns:

Exemplul 10

Rezolvați ecuația

Ecuația este prezentată în formă standard, deci Pasul 1 sărim.

Pasul 2.

Găsim discriminantul:

Aceasta înseamnă că ecuația are o singură rădăcină.

Răspuns:

Exemplul 11

Rezolvați ecuația

Ecuația este prezentată în formă standard, deci Pasul 1 sărim.

Pasul 2.

Găsim discriminantul:

Aceasta înseamnă că nu vom putea extrage rădăcina discriminantului. Nu există rădăcini ale ecuației.

Acum știm cum să scriem corect astfel de răspunsuri.

Răspuns: fara radacini

2. Rezolvarea ecuațiilor pătratice folosind teorema lui Vieta

Dacă vă amintiți, există un tip de ecuație care se numește redusă (când coeficientul a este egal cu):

Astfel de ecuații sunt foarte ușor de rezolvat folosind teorema lui Vieta:

Suma rădăcinilor dat ecuația pătratică este egală, iar produsul rădăcinilor este egal.

Trebuie doar să alegeți o pereche de numere al căror produs este egal cu termenul liber al ecuației, iar suma este egală cu al doilea coeficient, luat cu semnul opus.

Exemplul 12

Rezolvați ecuația

Această ecuație poate fi rezolvată folosind teorema lui Vieta deoarece .

Suma rădăcinilor ecuației este egală, adică. obținem prima ecuație:

Și produsul este egal cu:

Să compunem și să rezolvăm sistemul:

  • Şi. Suma este egală cu;
  • Şi. Suma este egală cu;
  • Şi. Suma este egală.

și sunt soluția pentru sistem:

Răspuns: ; .

Exemplul 13

Rezolvați ecuația

Răspuns:

Exemplul 14

Rezolvați ecuația

Ecuația este dată, ceea ce înseamnă:

Răspuns:

ECUATII CADRATE. NIVEL MEDIU

Ce este o ecuație pătratică?

Cu alte cuvinte, o ecuație pătratică este o ecuație de forma, unde - necunoscutul, - unele numere și.

Numărul se numește cel mai mare sau primul coeficient ecuație pătratică, - al doilea coeficient, A - membru gratuit.

Pentru că dacă ecuația devine imediat liniară, pentru că va dispărea.

În acest caz, și poate fi egal cu zero. În acest scaun se numește ecuația incomplet.

Dacă toți termenii sunt la locul lor, adică ecuația este complet.

Metode de rezolvare a ecuațiilor pătratice incomplete

În primul rând, să ne uităm la metodele de rezolvare a ecuațiilor pătratice incomplete - sunt mai simple.

Putem distinge următoarele tipuri de ecuații:

I., în această ecuație coeficientul și termenul liber sunt egali.

II. , în această ecuație coeficientul este egal.

III. , în această ecuație termenul liber este egal cu.

Acum să ne uităm la soluția pentru fiecare dintre aceste subtipuri.

Este evident că ecuația dată are întotdeauna o singură rădăcină:

Un număr pătrat nu poate fi negativ, deoarece atunci când înmulțiți două numere negative sau două pozitive, rezultatul va fi întotdeauna un număr pozitiv. De aceea:

dacă, atunci ecuația nu are soluții;

dacă avem două rădăcini

Nu este nevoie să memorezi aceste formule. Principalul lucru de reținut este că nu poate fi mai puțin.

Exemple de rezolvare a ecuațiilor pătratice

Exemplul 15

Răspuns:

Nu uita niciodată de rădăcinile cu semn negativ!

Exemplul 16

Pătratul unui număr nu poate fi negativ, ceea ce înseamnă că ecuația

fara radacini.

Pentru a nota pe scurt că o problemă nu are soluții, folosim pictograma set gol.

Răspuns:

Exemplul 17

Deci, această ecuație are două rădăcini: și.

Răspuns:

Să scoatem factorul comun din paranteze:

Produsul este egal cu zero dacă cel puțin unul dintre factori este egal cu zero. Aceasta înseamnă că ecuația are o soluție atunci când:

Deci, această ecuație pătratică are două rădăcini: și.

Exemplu:

Rezolvați ecuația.

Soluţie:

Să factorizăm partea stângă a ecuației și să găsim rădăcinile:

Răspuns:

Metode de rezolvare a ecuaţiilor pătratice complete

1. Discriminant

Rezolvarea ecuațiilor pătratice în acest fel este ușoară, principalul lucru este să vă amintiți succesiunea de acțiuni și câteva formule. Amintiți-vă, orice ecuație pătratică poate fi rezolvată folosind un discriminant! Chiar incomplet.

Ați observat rădăcina de la discriminant în formula pentru rădăcini?

Dar discriminantul poate fi negativ.

Ce să fac?

Trebuie să acordăm o atenție deosebită pasului 2. Discriminantul ne spune numărul de rădăcini ale ecuației.

  • Dacă, atunci ecuația are rădăcini:
  • Dacă, atunci ecuația are aceleași rădăcini și, de fapt, o rădăcină:

    Astfel de rădăcini se numesc rădăcini duble.

  • Dacă, atunci rădăcina discriminantului nu este extrasă. Aceasta indică faptul că ecuația nu are rădăcini.

De ce este posibil un număr diferit de rădăcini?

Să ne întoarcem la semnificația geometrică a ecuației pătratice. Graficul funcției este o parabolă:

Într-un caz special, care este o ecuație pătratică, .

Aceasta înseamnă că rădăcinile unei ecuații pătratice sunt punctele de intersecție cu axa (axa) absciselor.

O parabolă poate să nu intersecteze axa deloc sau o poate intersecta într-unul (când vârful parabolei se află pe axă) sau două puncte.

În plus, coeficientul este responsabil pentru direcția ramurilor parabolei. Dacă, atunci ramurile parabolei sunt îndreptate în sus, iar dacă, atunci în jos.

4 exemple de rezolvare a ecuațiilor pătratice

Exemplul 18

Răspuns:

Exemplul 19

Raspuns: .

Exemplul 20

Răspuns:

Exemplul 21

Asta înseamnă că nu există soluții.

Raspuns: .

2. Teorema lui Vieta

Folosirea teoremei lui Vieta este foarte ușoară.

Tot ce ai nevoie este ridica o astfel de pereche de numere, al căror produs este egal cu termenul liber al ecuației, iar suma este egală cu al doilea coeficient, luat cu semnul opus.

Este important să ne amintim că teorema lui Vieta poate fi aplicată numai în ecuații pătratice reduse ().

Să ne uităm la câteva exemple:

Exemplul 22

Rezolvați ecuația.

Soluţie:

Această ecuație poate fi rezolvată folosind teorema lui Vieta deoarece . Alți coeficienți: ; .

Suma rădăcinilor ecuației este:

Și produsul este egal cu:

Să selectăm perechi de numere al căror produs este egal și să verificăm dacă suma lor este egală:

  • Şi. Suma este egală cu;
  • Şi. Suma este egală cu;
  • Şi. Suma este egală.

și sunt soluția pentru sistem:

Astfel, și sunt rădăcinile ecuației noastre.

Raspuns: ; .

Exemplul 23

Soluţie:

Să selectăm perechi de numere care dau în produs și apoi să verificăm dacă suma lor este egală:

si: dau in total.

si: dau in total. Pentru a obține, este suficient să schimbați pur și simplu semnele presupuselor rădăcini: și, la urma urmei, produsul.

Răspuns:

Exemplul 24

Soluţie:

Termenul liber al ecuației este negativ și, prin urmare, produsul rădăcinilor este un număr negativ. Acest lucru este posibil numai dacă una dintre rădăcini este negativă, iar cealaltă este pozitivă. Prin urmare, suma rădăcinilor este egală cu diferențele modulelor lor.

Să selectăm astfel de perechi de numere care dau în produs și a căror diferență este egală cu:

și: diferența lor este egală - nu se potrivește;

și: - neadecvat;

și: - neadecvat;

si: - potrivit. Tot ce rămâne este să ne amintim că una dintre rădăcini este negativă. Deoarece suma lor trebuie să fie egală, rădăcina cu modulul mai mic trebuie să fie negativă: . Verificăm:

Răspuns:

Exemplul 25

Rezolvați ecuația.

Soluţie:

Ecuația este dată, ceea ce înseamnă:

Termenul liber este negativ și, prin urmare, produsul rădăcinilor este negativ. Și acest lucru este posibil numai atunci când o rădăcină a ecuației este negativă, iar cealaltă este pozitivă.

Să selectăm perechi de numere al căror produs este egal și apoi să determinăm care rădăcini ar trebui să aibă semn negativ:

Evident, doar rădăcinile și sunt potrivite pentru prima condiție:

Răspuns:

Exemplul 26

Rezolvați ecuația.

Soluţie:

Ecuația este dată, ceea ce înseamnă:

Suma rădăcinilor este negativă, ceea ce înseamnă că cel puțin una dintre rădăcini este negativă. Dar, deoarece produsul lor este pozitiv, înseamnă că ambele rădăcini au semnul minus.

Să selectăm perechi de numere al căror produs este egal cu:

Evident, rădăcinile sunt numerele și.

Răspuns:

De acord, este foarte convenabil să veniți cu rădăcini oral, în loc să numărați acest discriminant urât.

Încercați să folosiți teorema lui Vieta cât mai des posibil!

Dar teorema lui Vieta este necesară pentru a facilita și accelera găsirea rădăcinilor.

Pentru a beneficia de folosirea lui, trebuie să aduci acțiunile la automatitate. Și pentru asta, rezolvă încă cinci exemple.

Dar nu înșela: nu poți folosi un discriminant! Doar teorema lui Vieta!

5 exemple de teorema lui Vieta pentru munca independentă

Exemplul 27

Sarcina 1. ((x)^(2))-8x+12=0

Conform teoremei lui Vieta:

Ca de obicei, începem selecția cu piesa:

Nu este potrivit pentru că suma;

: suma este exact ceea ce ai nevoie.

Raspuns: ; .

Exemplul 28

Sarcina 2.

Și din nou teorema noastră preferată Vieta: suma trebuie să fie egală, iar produsul trebuie să fie egal.

Dar din moment ce nu trebuie să fie, dar, schimbăm semnele rădăcinilor: și (în total).

Raspuns: ; .

Exemplul 29

Sarcina 3.

Hmm... Unde este asta?

Trebuie să mutați toți termenii într-o singură parte:

Suma rădăcinilor este egală cu produsul.

Bine, oprește-te! Ecuația nu este dată.

Dar teorema lui Vieta este aplicabilă numai în ecuațiile date.

Deci mai întâi trebuie să dați o ecuație.

Dacă nu poți conduce, renunță la această idee și rezolvă-o într-un alt mod (de exemplu, printr-un discriminant).

Permiteți-mi să vă reamintesc că a da o ecuație pătratică înseamnă a egaliza coeficientul principal:

Apoi suma rădăcinilor este egală cu și produsul.

Este la fel de ușor ca o plăcintă să alegi aici: la urma urmei, este un număr prim (scuze pentru tautologie).

Raspuns: ; .

Exemplul 30

Sarcina 4.

Membrul liber este negativ.

Ce e special la asta?

Și adevărul este că rădăcinile vor avea semne diferite.

Și acum, în timpul selecției, verificăm nu suma rădăcinilor, ci diferența dintre modulele lor: această diferență este egală, dar un produs.

Deci, rădăcinile sunt egale cu și, dar una dintre ele este minus.

Teorema lui Vieta ne spune că suma rădăcinilor este egală cu al doilea coeficient cu semnul opus, adică.

Aceasta înseamnă că rădăcina mai mică va avea un minus: și, din moment ce.

Raspuns: ; .

Exemplul 31

Sarcina 5.

Ce ar trebui să faci mai întâi?

Așa este, dați ecuația:

Din nou: selectăm factorii numărului, iar diferența lor ar trebui să fie egală cu:

Rădăcinile sunt egale cu și, dar una dintre ele este minus. Care? Suma lor ar trebui să fie egală, ceea ce înseamnă că minusul va avea o rădăcină mai mare.

Raspuns: ; .

Să rezumam

  1. Teorema lui Vieta este folosită numai în ecuațiile pătratice date.
  2. Folosind teorema lui Vieta, puteți găsi rădăcinile prin selecție, oral.
  3. Dacă ecuația nu este dată sau nu se găsește o pereche adecvată de factori ai termenului liber, atunci nu există rădăcini întregi și trebuie să o rezolvați în alt mod (de exemplu, printr-un discriminant).

3. Metoda de selectare a unui pătrat complet

Dacă toți termenii care conțin necunoscutul sunt reprezentați sub formă de termeni din formule de înmulțire prescurtate - pătratul sumei sau al diferenței - atunci după înlocuirea variabilelor, ecuația poate fi prezentată sub forma unei ecuații pătratice incomplete de tipul.

De exemplu:

Exemplul 32

Rezolvați ecuația: .

Soluţie:

Răspuns:

Exemplul 33

Rezolvați ecuația: .

Soluţie:

Răspuns:

În general, transformarea va arăta astfel:

Urmează: .

Nu-ți aduce aminte de nimic?

Acesta este un lucru discriminatoriu! Exact așa am obținut formula discriminantă.

ECUATII CADRATE. SCURT DESPRE LUCRURILE PRINCIPALE

Ecuație cuadratică- aceasta este o ecuație de formă, unde - necunoscutul, - coeficienții ecuației pătratice, - termenul liber.

Ecuație pătratică completă- o ecuație în care coeficienții nu sunt egali cu zero.

Ecuație pătratică redusă- o ecuaţie în care coeficientul, adică: .

Ecuație pătratică incompletă- o ecuație în care coeficientul și/sau termenul liber c sunt egali cu zero:

  • dacă coeficientul, ecuația arată astfel: ,
  • dacă există un termen liber, ecuația are forma: ,
  • dacă și, ecuația arată astfel: .

1. Algoritm pentru rezolvarea ecuațiilor pătratice incomplete

1.1. Ecuație pătratică incompletă de forma, unde:

1) Să exprimăm necunoscutul: ,

2) Verificați semnul expresiei:

  • dacă, atunci ecuația nu are soluții,
  • dacă, atunci ecuația are două rădăcini.

1.2. Ecuație pătratică incompletă de forma, unde:

1) Să scoatem factorul comun din paranteze: ,

2) Produsul este egal cu zero dacă cel puțin unul dintre factori este egal cu zero. Prin urmare, ecuația are două rădăcini:

1.3. Ecuație pătratică incompletă de formă, unde:

Această ecuație are întotdeauna o singură rădăcină: .

2. Algoritm pentru rezolvarea ecuaţiilor pătratice complete de forma unde

2.1. Soluție folosind discriminant

1) Să aducem ecuația la forma standard: ,

2) Să calculăm discriminantul folosind formula: , care indică numărul de rădăcini ale ecuației:

3) Aflați rădăcinile ecuației:

  • dacă, atunci ecuația are rădăcini, care se găsesc prin formula:
  • dacă, atunci ecuația are o rădăcină, care se găsește prin formula:
  • dacă, atunci ecuația nu are rădăcini.

2.2. Rezolvare folosind teorema lui Vieta

Suma rădăcinilor ecuației pătratice reduse (ecuația formei în care) este egală, iar produsul rădăcinilor este egal, i.e. , A.

2.3. Rezolvare prin metoda selectării unui pătrat complet

Ecuațiile cuadratice sunt studiate în clasa a VIII-a, așa că nu este nimic complicat aici. Capacitatea de a le rezolva este absolut necesară.

O ecuație pătratică este o ecuație de forma ax 2 + bx + c = 0, unde coeficienții a, b și c sunt numere arbitrare și a ≠ 0.

Înainte de a studia metode specifice de soluție, rețineți că toate ecuațiile pătratice pot fi împărțite în trei clase:

  1. Nu au rădăcini;
  2. Au exact o rădăcină;
  3. Au două rădăcini diferite.

Aceasta este o diferență importantă între ecuațiile pătratice și cele liniare, unde rădăcina există întotdeauna și este unică. Cum se determină câte rădăcini are o ecuație? Există un lucru minunat pentru asta - discriminant.

Discriminant

Să fie dată ecuația pătratică ax 2 + bx + c = 0 Atunci discriminantul este pur și simplu numărul D = b 2 − 4ac.

Trebuie să știi această formulă pe de rost. De unde vine nu este important acum. Un alt lucru este important: prin semnul discriminantului poți determina câte rădăcini are o ecuație pătratică. Anume:

  1. Daca D< 0, корней нет;
  2. Dacă D = 0, există exact o rădăcină;
  3. Dacă D > 0, vor exista două rădăcini.

Vă rugăm să rețineți: discriminantul indică numărul de rădăcini și deloc semnele acestora, așa cum cred din anumite motive mulți oameni. Aruncă o privire la exemple și vei înțelege totul singur:

Sarcină. Câte rădăcini au ecuațiile pătratice:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Să scriem coeficienții pentru prima ecuație și să găsim discriminantul:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Deci discriminantul este pozitiv, deci ecuația are două rădăcini diferite. Analizăm a doua ecuație într-un mod similar:
a = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

Discriminantul este negativ, nu există rădăcini. Ultima ecuație rămasă este:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Discriminantul este zero - rădăcina va fi una.

Vă rugăm să rețineți că coeficienții au fost notați pentru fiecare ecuație. Da, este lung, da, este plictisitor, dar nu vei amesteca șansele și nu vei face greșeli stupide. Alege pentru tine: viteza sau calitate.

Apropo, dacă înțelegi, după un timp nu va mai fi nevoie să notezi toți coeficienții. Vei efectua astfel de operații în capul tău. Majoritatea oamenilor încep să facă asta undeva după 50-70 de ecuații rezolvate - în general, nu atât de mult.

Rădăcinile unei ecuații pătratice

Acum să trecem la soluția în sine. Dacă discriminantul D > 0, rădăcinile pot fi găsite folosind formulele:

Formula de bază pentru rădăcinile unei ecuații pătratice

Când D = 0, puteți folosi oricare dintre aceste formule - veți obține același număr, care va fi răspunsul. În sfârșit, dacă D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Prima ecuație:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ ecuația are două rădăcini. Să le găsim:

A doua ecuație:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ ecuația are din nou două rădăcini. Să le găsim

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(align)\]

În sfârșit, a treia ecuație:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ ecuația are o rădăcină. Se poate folosi orice formulă. De exemplu, primul:

După cum puteți vedea din exemple, totul este foarte simplu. Dacă știi formulele și poți număra, nu vor fi probleme. Cel mai adesea, erorile apar la înlocuirea coeficienților negativi în formulă. Din nou, tehnica descrisă mai sus vă va ajuta: uitați-vă la formula literal, notați fiecare pas - și foarte curând veți scăpa de greșeli.

Ecuații patratice incomplete

Se întâmplă ca o ecuație pătratică să fie ușor diferită de ceea ce este dat în definiție. De exemplu:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Este ușor de observat că acestor ecuații lipsește unul dintre termeni. Astfel de ecuații pătratice sunt chiar mai ușor de rezolvat decât cele standard: nici măcar nu necesită calcularea discriminantului. Deci, să introducem un nou concept:

Ecuația ax 2 + bx + c = 0 se numește ecuație pătratică incompletă dacă b = 0 sau c = 0, adică. coeficientul variabilei x sau al elementului liber este egal cu zero.

Desigur, un caz foarte dificil este posibil când ambii acești coeficienți sunt egali cu zero: b = c = 0. În acest caz, ecuația ia forma ax 2 = 0. Evident, o astfel de ecuație are o singură rădăcină: x = 0.

Să luăm în considerare cazurile rămase. Fie b = 0, atunci obținem o ecuație pătratică incompletă de forma ax 2 + c = 0. Să o transformăm puțin:

Din moment ce aritmetica rădăcină pătrată există doar dintr-un număr nenegativ, ultima egalitate are sens doar pentru (−c /a) ≥ 0. Concluzie:

  1. Dacă într-o ecuație pătratică incompletă de forma ax 2 + c = 0 este satisfăcută inegalitatea (−c /a) ≥ 0, vor exista două rădăcini. Formula este dată mai sus;
  2. Dacă (−c /a)< 0, корней нет.

După cum puteți vedea, discriminantul nu a fost necesar - în ecuațiile pătratice incomplete nu există calcule complexe. De fapt, nici nu este necesar să ne amintim inegalitatea (−c /a) ≥ 0. Este suficient să exprimăm valoarea x 2 și să vedem ce este de cealaltă parte a semnului egal. Dacă există un număr pozitiv, vor exista două rădăcini. Dacă este negativ, nu vor exista deloc rădăcini.

Acum să ne uităm la ecuații de forma ax 2 + bx = 0, în care elementul liber este egal cu zero. Totul este simplu aici: vor exista întotdeauna două rădăcini. Este suficient să factorizezi polinomul:

Scoaterea factorului comun din paranteze

Produsul este zero atunci când cel puțin unul dintre factori este zero. De aici vin rădăcinile. În concluzie, să ne uităm la câteva dintre aceste ecuații:

Sarcină. Rezolvarea ecuațiilor pătratice:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Nu există rădăcini, pentru că un pătrat nu poate fi egal cu un număr negativ.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Formule pentru rădăcinile unei ecuații pătratice. Sunt luate în considerare cazurile de rădăcini reale, multiple și complexe. Factorizarea trinom pătratic. Interpretare geometrică. Exemple de determinare a rădăcinilor și factoring.

Conţinut

Vezi și: Rezolvarea ecuațiilor pătratice online

Formule de bază

Luați în considerare ecuația pătratică:
(1) .
Rădăcinile unei ecuații pătratice(1) sunt determinate de formulele:
; .
Aceste formule pot fi combinate astfel:
.
Când rădăcinile unei ecuații pătratice sunt cunoscute, atunci un polinom de gradul doi poate fi reprezentat ca produs de factori (factorizați):
.

În plus, presupunem că - numere reale.
Să luăm în considerare discriminant al unei ecuații pătratice:
.
Dacă discriminantul este pozitiv, atunci ecuația pătratică (1) are două rădăcini reale diferite:
; .
Atunci factorizarea trinomului pătratic are forma:
.
Dacă discriminantul este egal cu zero, atunci ecuația pătratică (1) are două rădăcini reale multiple (egale):
.
Factorizare:
.
Dacă discriminantul este negativ, atunci ecuația pătratică (1) are două rădăcini conjugate complexe:
;
.
Iată unitatea imaginară, ;
și sunt părțile reale și imaginare ale rădăcinilor:
; .
Apoi

.

Interpretare grafică

Dacă construiești graficul unei funcții
,
care este o parabolă, atunci punctele de intersecție ale graficului cu axa vor fi rădăcinile ecuației
.
Când , graficul intersectează axa x (axa) în două puncte ().
Când , graficul atinge axa x într-un punct ().
Când , graficul nu traversează axa x ().

Formule utile legate de ecuația pătratică

(f.1) ;
(f.2) ;
(f.3) .

Derivarea formulei pentru rădăcinile unei ecuații pătratice

Efectuăm transformări și aplicăm formulele (f.1) și (f.3):




,
Unde
; .

Deci, am obținut formula pentru un polinom de gradul doi sub forma:
.
Aceasta arată că ecuația

efectuat la
Și .
Adică și sunt rădăcinile ecuației pătratice
.

Exemple de determinare a rădăcinilor unei ecuații pătratice

Exemplul 1


(1.1) .


.
Comparând cu ecuația noastră (1.1), găsim valorile coeficienților:
.
Găsim discriminantul:
.
Deoarece discriminantul este pozitiv, ecuația are două rădăcini reale:
;
;
.

De aici obținem factorizarea trinomului pătratic:

.

Graficul funcției y = 2 x 2 + 7 x + 3 intersectează axa x în două puncte.

Să diagramăm funcția
.
Graficul acestei funcții este o parabolă. Acesta traversează axa (axa) absciselor în două puncte:
Și .
Aceste puncte sunt rădăcinile ecuației inițiale (1.1).

;
;
.

Exemplul 2

Găsiți rădăcinile unei ecuații pătratice:
(2.1) .

Să scriem ecuația pătratică în formă generală:
.
Comparând cu ecuația inițială (2.1), găsim valorile coeficienților:
.
Găsim discriminantul:
.
Deoarece discriminantul este zero, ecuația are două rădăcini multiple (egale):
;
.

Atunci factorizarea trinomului are forma:
.

Graficul funcției y = x 2 - 4 x + 4 atinge axa x la un moment dat.

Să diagramăm funcția
.
Graficul acestei funcții este o parabolă. Atinge axa x (axa) la un moment dat:
.
Acest punct este rădăcina ecuației inițiale (2.1). Deoarece această rădăcină este factorizată de două ori:
,
atunci o astfel de rădăcină este de obicei numită multiplu. Adică, ei cred că există două rădăcini egale:
.

;
.

Exemplul 3

Găsiți rădăcinile unei ecuații pătratice:
(3.1) .

Să scriem ecuația pătratică în formă generală:
(1) .
Să rescriem ecuația inițială (3.1):
.
Comparând cu (1), găsim valorile coeficienților:
.
Găsim discriminantul:
.
Discriminantul este negativ, .

Prin urmare, nu există rădăcini reale.
;
;
.

Puteți găsi rădăcini complexe:


.

Apoi

Să diagramăm funcția
.
Graficul acestei funcții este o parabolă. Nu intersectează axa x (axa). Prin urmare, nu există rădăcini reale.

Nu există rădăcini reale. Rădăcini complexe:
;
;
.

Vezi și: