A cărui onoare fizician sunt colegii americani. Elemente chimice numite după oamenii de știință ruși și nume de locuri. Dosar. Atunci care este însăși insula stabilității?

La 22 februarie 1857 s-a născut fizicianul german Heinrich Rudolf Hertz, după care a fost numită unitatea de măsură a frecvenței. Ai întâlnit numele lui de mai multe ori în manualele școlare de fizică. site-ul amintește de oameni de știință celebri ale căror descoperiri le-au imortalizat numele în știință.

Blaise Pascal (1623−1662)



„Fericirea stă numai în pace, și nu în vanitate”, a spus savantul francez Blaise Pascal. Se pare că el însuși nu s-a străduit spre fericire, dedicându-și întreaga viață cercetărilor persistente în matematică, fizică, filozofie și literatură. Tatăl său a fost implicat în educația viitorului om de știință, întocmind un program extrem de complex în domeniul științelor naturii. Deja la vârsta de 16 ani, Pascal a scris lucrarea „Eseu despre secțiunile conice”. Acum, teorema despre care a fost descrisă această lucrare se numește teorema lui Pascal. Genialul om de știință a devenit unul dintre fondatori analiză matematicăși teoria probabilității și, de asemenea, a formulat legea principală a hidrostaticii. Pascal și-a dedicat timpul liber literaturii. El a scris „Scrisori de la un provincial”, ridiculizându-i pe iezuiți și lucrări religioase serioase.

Pascal și-a dedicat timpul liber literaturii

O unitate de măsurare a presiunii, un limbaj de programare și o universitate franceză au fost numite după om de știință. „Descoperirile accidentale sunt făcute doar de minți pregătite”, a spus Blaise Pascal și în acest sens a avut cu siguranță dreptate.

Isaac Newton (1643−1727)




Medicii credeau că Isaac era puțin probabil să trăiască până la bătrânețe și că va suferi de boli grave- În copilărie, sănătatea lui era foarte precară. În schimb, omul de știință englez a trăit 84 de ani și a pus bazele fizicii moderne. Newton și-a dedicat tot timpul științei. Cea mai faimoasă descoperire a sa a fost legea gravitația universală. Omul de știință a formulat trei legi ale mecanicii clasice, teorema principală a analizei, realizate descoperiri importanteîn teoria culorilor și a inventat telescopul reflectorizant.Newton are o unitate de forță, un premiu internațional de fizică, 7 legi și 8 teoreme numite după el.

Daniel Gabriel Fahrenheit 1686−1736



Unitatea de măsură a temperaturii, gradul Fahrenheit, poartă numele omului de știință.Daniel provenea dintr-o familie bogată de negustori. Părinții lui sperau că va continua afacerea familiei, așa că viitorul om de știință a studiat comerțul.

Scara Fahrenheit este încă utilizată pe scară largă în SUA


Dacă la un moment dat nu s-ar fi arătat interesat de a aplica stiintele naturii, atunci sistemul de măsurare a temperaturii care a dominat multă vreme Europa nu ar fi apărut. Cu toate acestea, nu poate fi numit ideal, din moment ce omul de știință i-a luat temperatura corpului soției sale, care, după norocul, a fost răcită în acel moment, la 100 de grade.În ciuda faptului că în a doua jumătate a secolului al XX-lea scara Celsius a înlocuit sistemul savantului german, scala de temperatură Fahrenheit este încă utilizată pe scară largă în Statele Unite.

Anders Celsius (1701−1744)




Este o greșeală să crezi că viața unui om de știință a fost petrecută în biroul lui.


Gradul Celsius a fost numit după savantul suedez.Nu este de mirare că Anders Celsius și-a dedicat viața științei. Tatăl său și ambii bunici au predat la o universitate suedeză, iar unchiul său era orientalist și botanist. Anders era interesat în primul rând de fizică, geologie și meteorologie. Este o greșeală să crezi că viața unui om de știință a trăit doar în biroul său. A luat parte la expediții la ecuator, în Laponia și a studiat aurora nordică. Între timp, Celsius a inventat o scară de temperatură în care punctul de fierbere al apei era luat ca 0 grade, iar temperatura de topire a gheții ca 100 de grade. Ulterior, biologul Carl Linnaeus a transformat scara Celsius, iar astăzi este folosită în întreaga lume.

Alessandro Giuseppe Antonio Anastasio Gerolamo Umberto Volta (1745−1827)



Oamenii din jurul lui au observat că Alessandro Volta avea elementele unui viitor om de știință chiar și în copilărie. La vârsta de 12 ani, un băiat iscoditor a decis să exploreze un izvor nu departe de casa lui, în care bucăți de mică străluceau și aproape s-au înecat.

Alessandro a primit studiile primare la Seminarul Regal din orașul italian Como. La 24 de ani și-a susținut disertația.

Alessandro Volta a primit de la Napoleon titlul de senator și conte


Volta a proiectat prima sursă chimică de curent electric din lume - Stâlpul Voltaic. A demonstrat cu succes o descoperire revoluționară pentru știință în Franța, pentru care a primit titlul de senator și conte de la Napoleon Bonaparte. O unitate de măsură poartă numele omului de știință tensiune electrică- Volt.

Andre-Marie Ampère (1775−1836)




Contribuția omului de știință francez la știință este greu de supraestimat. El a fost cel care a inventat termenii „curent electric” și „cibernetică”. Studiul electromagnetismului i-a permis lui Ampere să formuleze legea interacțiunii dintre curenti electriciși demonstrează teorema privind circulația câmpului magnetic.Unitatea de curent electric este numită în onoarea sa.

Georg Simon Ohm (1787−1854)



Și-a făcut studiile primare la o școală în care era un singur profesor. Viitorul om de știință a studiat în mod independent lucrările de fizică și matematică.

Georg a visat să dezlege fenomenele naturale și a reușit complet. El a demonstrat relația dintre rezistență, tensiune și curent într-un circuit. Fiecare școlar știe (sau ar vrea să creadă că știe) legea lui Ohm.Georg a primit și el grad academic este doctor și și-a împărtășit cunoștințele studenților din universitățile germane de mulți ani.Unitatea de rezistență electrică poartă numele lui.

Heinrich Rudolf Hertz (1857-1894)



Fara descoperiri fizician german televiziunea și radioul pur și simplu nu ar exista. Heinrich Hertz a investigat câmpurile electrice și magnetice și a confirmat experimental teoria electromagnetică a luminii a lui Maxwell. Pentru descoperirea sa, a primit mai multe premii științifice prestigioase, inclusiv Ordinul Japonez al Comorii Sacre.

Uniunea Internațională de Chimie Pură și Aplicată (IUPAC) a aprobat denumirea a patru noi elemente ale tabelului periodic: 113, 115, 117 și 118. Acesta din urmă poartă numele fizicianului rus, academicianul Yuri Oganesyan. Oamenii de știință au mai fost „prinși în cutie”: Mendeleev, Einstein, Bohr, Rutherford, Curies... Dar doar pentru a doua oară în istorie acest lucru s-a întâmplat în timpul vieții unui om de știință. Un precedent a apărut în 1997, când Glenn Seaborg a primit o astfel de onoare. Yuri Oganesyan a fost prezis de mult timp Premiul Nobel. Dar, vezi tu, introducerea propriei celule în tabelul periodic este mult mai tare.

În rândurile inferioare ale tabelului puteți găsi cu ușurință uraniu, numărul său atomic este 92. Toate elementele ulterioare, începând de la 93, sunt așa-numitele transurani. Unele dintre ele au apărut în urmă cu aproximativ 10 miliarde de ani, ca urmare a reacțiilor nucleare din interiorul stelelor. Au fost găsite urme de plutoniu și neptuniu în scoarta terestra. Dar majoritatea elementelor transuranice s-au degradat de mult, iar acum nu putem decât să prezicem cum au fost și apoi să încercăm să le recreăm în laborator.

Primii care au făcut acest lucru au fost oamenii de știință americani Glenn Seaborg și Edwin MacMillan în 1940. S-a născut plutoniul. Mai târziu, grupul lui Seaborg a sintetizat americiu, curiu, berkeliu... Până atunci, aproape întreaga lume se alăturase cursei pentru nuclee supergrele.

Yuri Oganesyan (n. 1933). Absolvent al MEPhI, specialist în domeniul fizicii nucleare, academician al Academiei Ruse de Științe, director științific al Laboratorului de Reacții Nucleare al JINR. Președinte al Consiliului Științific RAS pentru Fizică Nucleară Aplicată. Are titluri onorifice la universități și academii din Japonia, Franța, Italia, Germania și alte țări. A fost distins cu Premiul de Stat al URSS, Ordinul Steagul Roșu al Muncii, Prietenia Popoarelor, „Pentru Serviciile Patriei”, etc. Foto: wikipedia.org

În 1964, un nou element chimic cu număr atomic 104 a fost sintetizat pentru prima dată în URSS, la Institutul Comun pentru Cercetări Nucleare (JINR), care se află în Dubna, lângă Moscova. Mai târziu, acest element a primit numele de „rutherfordium”. Proiectul a fost condus de unul dintre fondatorii institutului, Georgy Flerov. Numele său este inclus și în tabel: flerovium, 114.

Yuri Oganesyan a fost un elev al lui Flerov și unul dintre cei care au sintetizat ruterfordul, apoi dubniul și elementele mai grele. Datorită succeselor oamenilor de știință sovietici, Rusia a devenit lider în cursa transuraniului și își păstrează încă acest statut.

Echipa științifică a cărei muncă a dus la descoperire își trimite propunerea către IUPAC. Comisia analizează argumentele pro și contra, pe baza următoarelor reguli: „...din nou elemente deschise poate fi numit: (a) după numele unui personaj sau concept mitologic (inclusiv al unui obiect astronomic), (b) după numele unui mineral sau al unei substanțe similare, (c) după numele aşezare sau zonă geografică, (d) în funcție de proprietățile elementului sau (e) după numele omului de știință.”

Numele celor patru elemente noi a durat mult, aproape un an. Data anunțării deciziei a fost amânată de mai multe ori. Tensiunea creștea. În cele din urmă, la 28 noiembrie 2016, după o perioadă de cinci luni pentru primirea propunerilor și obiecțiilor publice, comisia nu a găsit niciun motiv să respingă nihonium, moscovium, tennessine și oganesson și le-a aprobat.

Apropo, sufixul „-on-” nu este foarte tipic pentru elementele chimice. A fost ales pentru oganesson deoarece proprietățile chimice ale noului element sunt similare cu gazele inerte - această similitudine este subliniată de consonanța sa cu neonul, argonul, kriptonul și xenonul.

Nașterea unui nou element este un eveniment de proporții istorice. Până în prezent, au fost sintetizate elemente din perioada a șaptea până la a 118-a inclusiv, iar aceasta nu este limita. În față sunt al 119-lea, al 120-lea, al 121-lea... Izotopii elementelor cu numere atomice mai mari de 100 trăiesc adesea nu mai mult de o miime de secundă. Și se pare că cu cât miezul este mai greu, cu atât durata de viață este mai scurtă. Această regulă se aplică până la al 113-lea element inclusiv.

În anii 1960, Georgy Flerov a sugerat că nu trebuie să fie respectat cu strictețe pe măsură ce se merge mai adânc în tabel. Dar cum să demonstrez asta? Căutarea așa-numitelor insule de stabilitate a fost una dintre cele mai importante probleme din fizică de mai bine de 40 de ani. În 2006, o echipă de oameni de știință condusă de Yuri Oganesyan și-a confirmat existența. Lumea științifică a răsuflat ușurată: înseamnă că nu are rost să cauți din ce în ce mai mult nuclee grele Există.

Coridorul legendarului Laborator de Reacții Nucleare al JINR. Foto: Daria Golubovich/"Pisica lui Schrodinger"

Yuri Tsolakovich, care sunt mai exact insulele de stabilitate despre care s-a vorbit mult în ultima vreme?

Yuri Oganesyan:Știți că nucleele atomilor constau din protoni și neutroni. Dar doar un număr strict definit din aceste „blocuri” sunt conectate între ele într-un singur corp, care reprezintă nucleul unui atom. Există mai multe combinații care „nu funcționează”. Prin urmare, în principiu, lumea noastră se află într-o mare de instabilitate. Da, există nuclee care rămân din momentul formării sistem solar, sunt stabile. Hidrogenul, de exemplu. Vom numi zone cu astfel de nuclee „continente”. Treptat intră într-o mare de instabilitate pe măsură ce ne îndreptăm către elemente mai grele. Dar se dovedește că dacă mergi departe de uscat, apare o insulă de stabilitate, unde se nasc nuclee longevive. Insula stabilității este o descoperire care a fost deja făcută, recunoscută, dar ora exacta Viața centenarilor de pe această insulă nu a fost încă prezisă suficient de bine.

Cum au fost descoperite insulele de stabilitate?

Yuri Oganesyan: I-am cautat mult timp. Când este pusă o sarcină, este important să existe un răspuns clar „da” sau „nu”. Există de fapt două motive pentru un rezultat zero: fie nu l-ați atins, fie ceea ce căutați nu există deloc. Am avut zero până în 2000. Ne-am gândit că poate teoreticienii au avut dreptate când și-au pictat pozele frumoase, dar nu am putut ajunge la ei. În anii 90, am ajuns la concluzia că merită să complicăm experimentul. Acest lucru contrazicea realitățile vremii: era nevoie de echipamente noi, dar nu erau suficiente fonduri. Cu toate acestea, până la începutul secolului douăzeci și unu eram gata să încercăm noua abordare- iradiază plutoniu cu calciu-48.

De ce este calciul-48, acest izotop special, atât de important pentru tine?

Yuri Oganesyan: Are opt neutroni în plus. Și știam că insula stabilității este acolo unde există un exces de neutroni. Prin urmare, izotopul greu al plutoniului-244 a fost iradiat cu calciu-48. În această reacție, a fost sintetizat un izotop al elementului supergreu 114, flerovium-289, care trăiește 2,7 secunde. La scara transformărilor nucleare, acest timp este considerat destul de lung și servește drept dovadă că există o insulă de stabilitate. Am înotat până la el și, pe măsură ce ne-am îndreptat mai adânc, stabilitatea a crescut.

Un fragment al separatorului ACCULINNA-2, care este folosit pentru a studia structura nucleelor ​​exotice ușoare. Foto: Daria Golubovich/"Pisica lui Schrodinger"

De ce, în principiu, a existat încredere că există insule de stabilitate?

Yuri Oganesyan:Încrederea a apărut când a devenit clar că nucleul are o structură... Cu mult timp în urmă, în 1928, marele nostru compatriot Georgy Gamow (fizician teoretic sovietic și american) a sugerat că materie nucleară arată ca o picătură de lichid. Când acest model a început să fie testat, s-a dovedit că descrie surprinzător de bine proprietățile globale ale nucleelor. Dar atunci laboratorul nostru a primit un rezultat care a schimbat radical aceste idei. Am constatat că în stare normală nucleul nu se comportă ca o picătură de lichid, nu este corp amorf, dar are o structură internă. Fără el, nucleul ar exista doar 10-19 secunde. Și prezența proprietăților structurale ale materiei nucleare duce la faptul că nucleul trăiește secunde, ore și sperăm că poate trăi zile și poate chiar milioane de ani. Această speranță poate fi prea îndrăzneață, dar sperăm și căutăm elemente transuraniu în natură.

Una dintre cele mai interesante întrebări: există o limită a diversității elementelor chimice? Sau există infinit de multe dintre ele?

Yuri Oganesyan: Modelul prin picurare a prezis că nu sunt mai mult de o sută de ei. Din punctul ei de vedere, există o limită a existenței unor elemente noi. Astăzi sunt descoperite 118 dintre ele Câte mai pot fi?.. Este necesar să înțelegem proprietățile distinctive ale nucleelor ​​„insulare” pentru a face o prognoză pentru cele mai grele. Din punctul de vedere al teoriei microscopice, care ia în considerare structura nucleului, lumea noastră nu se termină cu al sutelea element care pleacă în marea instabilității. Când vorbim despre limita existenței nucleelor ​​atomice, trebuie neapărat să ținem cont de acest lucru.

Există vreo realizare pe care o considerați cea mai importantă în viață?

Yuri Oganesyan: Fac ceea ce mă interesează cu adevărat. Uneori mă las foarte purtat. Uneori, ceva merge și mă bucur că a funcționat. Asta e viaţa. Acesta nu este un episod. Nu fac parte din categoria oamenilor care visau să fie oameni de știință în copilărie, la școală, nu. Dar cumva eram bun la matematică și fizică, așa că m-am dus la universitate unde trebuia să dau aceste examene. Ei bine, am trecut. Și, în general, cred că în viață suntem cu toții foarte susceptibili la accidente. Serios, nu? Facem mulți pași în viață complet aleatoriu. Și apoi, când devii adult, ți se pune întrebarea: „De ce ai făcut asta?” Ei bine, am făcut și am făcut. Aceasta este activitatea mea obișnuită de știință.

„Putem obține un atom al elementului 118 într-o lună”

Acum JINR construiește prima fabrică de elemente supergrele din lume bazată pe acceleratorul de ioni DRIBs-III (Dubna Radioactive Ion Beams), cel mai puternic din domeniul său energetic. Acolo vor sintetiza elemente supergrele din perioada a opta (119, 120, 121) și vor produce materiale radioactive pentru ținte. Experimentele vor începe la sfârșitul anului 2017 - începutul anului 2018. Andrey Popeko, de la Laboratorul de Reacții Nucleare care poartă numele. G. N. Flyorov JINR, a spus de ce este nevoie de toate acestea.

Andrey Georgievich, cum sunt prezise proprietățile elementelor noi?

Andrey Popeko: Proprietatea principală de la care urmează toate celelalte este masa nucleului. Este foarte greu de prezis, dar pe baza masei, se poate deja ghici cum se va descompune nucleul. Există modele experimentale diferite. Poți studia nucleul și, să zicem, să încerci să-i descrii proprietățile. Știind ceva despre masă, putem vorbi despre energia particulelor pe care nucleul le va emite și să facem predicții despre durata sa de viață. Acest lucru este destul de greoi și nu foarte precis, dar mai mult sau mai puțin fiabil. Dar dacă nucleul fisiune spontan, predicția devine mult mai dificilă și mai puțin precisă.

Ce putem spune despre proprietățile lui 118?

Andrey Popeko: Trăiește 0,07 secunde și emite particule alfa cu o energie de 11,7 MeV. Este măsurat. În viitor, puteți compara datele experimentale cu cele teoretice și puteți corecta modelul.

Într-una dintre prelegerile tale ai spus că tabelul se termină probabil la al 174-lea element. De ce?

Andrey Popeko: Se presupune că alți electroni vor cădea pur și simplu pe nucleu. Cu cât un nucleu are mai multă sarcină, cu atât mai puternic atrage electronii. Nucleul este plus, electronii sunt minus. La un moment dat, nucleul va atrage electronii atât de puternic încât trebuie să cadă pe el. Limita elementelor va veni.

Pot exista astfel de nuclee?

Andrey Popeko: Dacă credem că elementul 174 există, credem că există și nucleul său. Dar este acest lucru adevărat? Uraniul, elementul 92, trăiește 4,5 miliarde de ani, iar elementul 118 durează mai puțin de o milisecundă. De fapt, anterior se credea că tabelul se termină la un element a cărui durată de viață este neglijabilă. Apoi s-a dovedit că nu totul este atât de simplu dacă te miști conform tabelului. Mai întâi, durata de viață a unui element scade, apoi, pentru următorul, crește puțin, apoi scade din nou.

Role cu membrane de cale - nanomaterial pentru purificarea plasmei sanguine în tratamentul bolilor severe boli infectioase, eliminând consecințele chimioterapiei. Aceste membrane au fost dezvoltate la Laboratorul de Reacții Nucleare al JINR încă din anii 1970. Foto: Daria Golubovich/"Pisica lui Schrodinger"

Când crește, este aceasta o insulă de stabilitate?

Andrey Popeko: Acesta este un indiciu că există. Acest lucru este clar vizibil pe grafice.

Atunci care este însăși insula stabilității?

Andrey Popeko: O anumită regiune în care există nuclee izotopice care au o durată de viață mai lungă decât vecinii lor.

Este încă de găsit această zonă?

Andrey Popeko: Până acum doar marginea a fost prinsă.

Ce vei căuta într-o fabrică de elemente super grele?

Andrey Popeko: Experimentele privind sinteza elementelor necesită mult timp. În medie, șase luni de muncă continuă. Putem obține un atom al elementului 118 într-o lună. În plus, lucrăm cu materiale foarte radioactive, iar sediul nostru trebuie să îndeplinească cerințe speciale. Dar când a fost creat laboratorul, ele nu existau încă. Acum se construiește o clădire separată în conformitate cu toate cerințele de siguranță împotriva radiațiilor - numai pentru aceste experimente. Acceleratorul este conceput pentru sinteza transuraniilor. Vom studia, în primul rând, în detaliu proprietățile elementelor 117 și 118. În al doilea rând, căutați noi izotopi. În al treilea rând, încercați să sintetizați elemente și mai grele. Puteți obține locurile 119 și 120.

Există planuri de a experimenta cu noi materiale țintă?

Andrey Popeko: Am început deja să lucrăm cu titan. Au petrecut un total de 20 de ani pe calciu și au obținut șase elemente noi.

Din păcate, nu există multe domenii științifice în care Rusia ocupă o poziție de lider. Cum reușim să câștigăm lupta pentru transuranii?

Andrey Popeko: De fapt, liderii de aici au fost întotdeauna Statele Unite și Uniunea Sovietică. Faptul este că principalul material pentru crearea armelor atomice a fost plutoniul - trebuia obținut cumva. Apoi ne-am gândit: nu ar trebui să folosim alte substanțe? Din teoria nucleară rezultă că trebuie să luăm elemente cu număr par și greutate atomică impară. Am încercat curium-245 - nu a funcționat. California-249 de asemenea. Au început să studieze elementele transuraniului. S-a întâmplat că Uniunea Sovietică și America au fost primele care au abordat această problemă. Apoi Germania - a fost o discuție acolo în anii 60: merită să te implici în joc dacă rușii și americanii au făcut deja totul? Teoreticienii au convins că merită. Drept urmare, germanii au primit șase elemente: de la 107 la 112. Apropo, metoda pe care au ales-o a fost dezvoltată de Yuri Oganesyan în anii 70. Și el, fiind directorul laboratorului nostru, i-a eliberat pe fizicienii de frunte pentru a-i ajuta pe germani. Toată lumea a fost surprinsă: „Cum e asta?” Dar știința este știință, nu ar trebui să existe concurență aici. Dacă există o oportunitate de a dobândi cunoștințe noi, ar trebui să participați.

Sursa ECR supraconductoare - cu ajutorul căreia se produc fascicule de ioni foarte încărcați de xenon, iod, cripton, argon. Foto: Daria Golubovich/"Pisica lui Schrodinger"

A ales JINR o altă metodă?

Andrey Popeko: Da. S-a dovedit că a avut și succes. Ceva mai târziu, japonezii au început să efectueze experimente similare. Și au sintetizat al 113-lea. L-am primit cu aproape un an mai devreme ca un produs al prăbușirii celui de-al 115-lea, dar nu ne-am certat. Dumnezeu să fie cu ei, nu te deranjează. Acest grup japonez a fost internat la noi - pe mulți dintre ei îi cunoaștem personal și suntem prieteni. Și asta e foarte bine. Într-un fel, studenții noștri au fost cei care au primit cel de-al 113-lea element. Apropo, ne-au confirmat rezultatele. Sunt puțini oameni dispuși să confirme rezultatele altora.

Acest lucru necesită o anumită onestitate.

Andrey Popeko: Ei bine, da. Cum altfel? În știință, probabil că așa este.

Cum este să studiezi un fenomen pe care doar aproximativ cinci sute de oameni din întreaga lume îl vor înțelege cu adevărat?

Andrey Popeko: imi place. Am făcut asta toată viața, 48 de ani.

Cei mai mulți dintre noi ni se pare incredibil de greu să înțelegem ceea ce faci. Sinteza elementelor transuraniu nu este un subiect care este discutat la cina cu familia.

Andrey Popeko: Noi generăm cunoștințe noi și nu se vor pierde. Dacă putem studia chimia atomilor individuali, atunci avem metode analitice cea mai mare sensibilitate, care sunt, evident, potrivite pentru studiul substanțelor care poluează mediu. Pentru producerea de izotopi rari în radiomedicină. Cine va înțelege fizica? particule elementare? Cine va înțelege ce este bosonul Higgs?

Da. Povestea asemanatoare.

Andrey Popeko: Adevărat, există încă mai mulți oameni care înțeleg ce este bosonul Higgs decât cei care înțeleg elementele supergrele... Experimentele de la Large Hadron Collider oferă rezultate practice extrem de importante. La Centrul European de Cercetare Nucleară s-a născut internetul.

Internetul este un exemplu preferat de fizicieni.

Andrey Popeko: Dar supraconductivitate, electronică, detectoare, materiale noi, metode de tomografie? Toate acestea efecte secundare fizica energiei înalte. Noile cunoștințe nu se vor pierde niciodată.

Zei și eroi. După cine au fost numite elementele chimice?

Vanadiu, V(1801). Vanadis este zeița scandinavă a iubirii, frumuseții, fertilității și războiului (cum le face pe toate?). Stăpânul Valkyriilor. Ea este Freya, Gefna, Hern, Mardell, Sur, Valfreya. Acest nume este dat elementului deoarece formează compuși multicolori și foarte frumoși, iar zeița pare să fie și ea foarte frumoasă.

Niobiu, Nb(1801). Inițial a fost numit columbium în cinstea țării din care a fost adusă prima probă din mineralul care conținea acest element. Dar apoi a fost descoperit tantalul, care în aproape toate proprietățile chimice a coincis cu columbiul. Drept urmare, s-a decis să se numească elementul după Niobe, fiica regelui grec Tantalus.

Paladiu, Pd(1802). În onoarea asteroidului Pallas descoperit în același an, al cărui nume se întoarce și la miturile Greciei Antice.

Cadmiu, Cd(1817). Acest element a fost extras inițial din minereu de zinc, al cărui nume grecesc este direct legat de eroul Cadmus. Acest personaj a trăit o strălucire și viata bogata: a învins balaurul, s-a căsătorit cu Harmony, a fondat Teba.

Promethium, Pm(1945). Da, acesta este același Prometeu care a dat foc oamenilor, după care a avut probleme serioase cu autoritățile divine. Și cu ficat.

Samaria, Sm(1878). Nu, acest lucru nu este în întregime în onoarea orașului Samara. Elementul a fost izolat din mineralul samarskite, care a fost furnizat oamenilor de știință europeni de inginerul minier rus Vasily Samarsky-Bykhovets (1803-1870). Aceasta poate fi considerată prima intrare a țării noastre în tabelul periodic (dacă nu țineți cont de numele său, desigur).

Gadoliniu, Gd(1880 Numit după Johan Gadolin (1760-1852), chimist și fizician finlandez care a descoperit elementul ytriu.

Tantal, Ta(1802). Regele grec Tantal i-a jignit pe zei (există diferite versiuni ale motivului), pentru care a fost torturat în toate modurile posibile în lumea interlopă. Oamenii de știință au suferit aproape în același mod când au încercat să obțină tantal pur. A durat mai bine de o sută de ani.

Toriu, Th(1828). Descoperitorul a fost chimistul suedez Jons Berzelius, care a dat elementului un nume în onoarea severului zeu scandinav Thor.

Curium, Cm(1944). Singurul element numit după două persoane - laureații Nobel Pierre (1859-1906) și Marie (1867-1934) Curie.

Einsteinium, Es(1952). Totul este clar aici: Einstein, un mare om de știință. Adevărat, nu am fost niciodată implicat în sinteza elementelor noi.

Fermium, Fm(1952). Numit în onoarea lui Enrico Fermi (1901-1954), un om de știință italo-american care a adus o contribuție majoră la dezvoltarea fizicii particulelor și creatorul primului reactor nuclear.

Mendelevium, Md.(1955). Aceasta este în onoarea lui Dmitri Ivanovici Mendeleev (1834-1907). Singurul lucru ciudat este că autorul lege periodică Nu am intrat imediat la masă.

Nobelium, nr(1957). Există o controversă cu privire la numele acestui element de multă vreme. Prioritatea în descoperirea sa aparține oamenilor de știință din Dubna, care l-au numit joliotium în onoarea unui alt reprezentant al familiei Curie - ginerele lui Pierre și Marie Frederic Joliot-Curie (de asemenea, laureat al Premiului Nobel). În același timp, un grup de fizicieni care lucrează în Suedia și-a propus să perpetueze memoria lui Alfred Nobel (1833-1896). Pentru o lungă perioadă de timp, în versiunea sovietică a tabelului periodic, al 102-lea a fost listat ca jolioțiu, iar în versiunile americane și europene - ca nobeliu. Dar în cele din urmă, IUPAC, recunoscând prioritatea sovietică, a părăsit versiunea occidentală.

Lawrence, Lr(1961). Cam aceeași poveste ca și cu Nobelium. Oamenii de știință de la JINR au propus să denumească elementul rutherfordium în onoarea „părintelui fizicii nucleare” Ernest Rutherford (1871-1937), americanii - lawrencium în onoarea inventatorului ciclotronului, fizicianul Ernest Lawrence (1901-1958). Aplicația americană a câștigat, iar elementul 104 a devenit rutherfordiu.

Rutherfordium, Rf(1964). În URSS a fost numit Kurchatoviy în onoare fizician sovietic Igor Kurchatov. Numele final a fost aprobat de IUPAC abia în 1997.

Seaborgium, Sg(1974). Primul și singurul caz până în 2016, când un element chimic a fost numit după un om de știință în viață. Aceasta a fost o excepție de la regulă, dar contribuția lui Glenn Seaborg la sinteza de noi elemente a fost extrem de mare (aproximativ o duzină de celule în tabelul periodic).

Borii, Bh(1976). S-a discutat și despre numele și prioritatea deschiderii. În 1992, oamenii de știință sovietici și germani au convenit să numească elementul nilsborium în onoarea fizicianului danez Niels Bohr (1885-1962). IUPAC a aprobat numele prescurtat - bohrium. Această decizie nu poate fi numită umană în raport cu școlari: ei trebuie să-și amintească că borul și bohriumul sunt elemente complet diferite.

Meitnerium, Mt.(1982). Numit după Lise Meitner (1878-1968), un fizician și radiochimist care a lucrat în Austria, Suedia și SUA. Apropo, Meitner a fost unul dintre puținii oameni de știință majori care au refuzat să participe la Proiectul Manhattan. Fiind o pacifistă convinsă, ea a declarat: „Nu voi face o bombă!”

cu raze X, Rg(1994). Descoperitorul celebrelor raze, primul laureat al Nobel pentru fizică, Wilhelm Roentgen (1845-1923), este imortalizat în această celulă. Elementul a fost sintetizat de oamenii de știință germani, deși grupul de cercetare a inclus și reprezentanți din Dubna, printre care Andrei Popeko.

Copernicius, Cn(1996). În onoarea marelui astronom Nicolaus Copernic (1473-1543). Cum a ajuns el la egalitate cu fizicienii din secolele XIX-XX nu este pe deplin clar. Și nu este deloc clar cum să numim elementul în rusă: copernicium sau copernicium? Ambele variante sunt considerate acceptabile.

Flerovium, Fl(1998). Prin aprobarea acestui nume, comunitatea internațională de chimie a demonstrat că prețuiește contribuția fizicienilor ruși la sinteza de noi elemente. Georgy Flerov (1913-1990) a condus laboratorul de reacții nucleare de la JINR, unde au fost sintetizate multe elemente transuraniu (în special, de la 102 la 110). Realizările JINR sunt, de asemenea, imortalizate în numele celui de-al 105-lea element ( dubniu), al 115-lea ( Moscova- Dubna este situat în regiunea Moscova) și al 118-lea ( Oganesson).

Oganesson, Og(2002). Americanii au anunțat inițial sinteza elementului 118 în 1999. Și au sugerat să-l numească Giorsi în onoarea fizicianului Albert Giorso. Dar experimentul lor s-a dovedit a fi greșit. Prioritatea descoperirii a fost recunoscută de oamenii de știință din Dubna. În vara lui 2016, IUPAC a recomandat să se dea elementului numele oganesson în onoarea lui Yuri Oganesyan.

În articolul final din seria „Originea numelor elementelor chimice”, ne vom uita la elementele care și-au primit numele în onoarea oamenilor de știință și a cercetătorilor.

Gadoliniu

În 1794, chimistul și mineralogul finlandez Johan Gadolin a descoperit un oxid dintr-un metal necunoscut într-un mineral găsit lângă Ytterby. În 1879, Lecoq de Boisbaudran a numit acest oxid de pământ de gadoliniu (Gadolinia), iar când metalul a fost izolat de acesta în 1896, a fost numit gadoliniu. Aceasta a fost prima dată când un element chimic a fost numit după un om de știință.

Samariul

La mijlocul anilor '40 ai secolului al XIX-lea, inginerul minier V.E. Samarsky-Bykhovets i-a oferit chimistului german Heinrich Rose mostre din mineralul negru Ural găsit în Munții Ilmen pentru cercetare. Cu puțin timp înainte de aceasta, mineralul a fost examinat de fratele lui Heinrich, Gustav, și a numit mineralul uranotanthalum. Heinrich Rose, în semn de recunoștință, a sugerat să redenumească mineralul și să-l numească samarskite. După cum a scris Rose, „în onoarea colonelului Samarsky, prin a cărui favoare am putut face toate observațiile de mai sus asupra acestui mineral”. Prezența unui nou element în samarskite a fost dovedită abia în 1879 de Lecoq de Boisbaudran, care a numit acest element samariu.

Fermiu și einsteiniu

În 1953, în produsele exploziei termonucleare pe care americanii au efectuat-o în 1952, au fost descoperiți izotopi ai două elemente noi, care au fost denumite fermiu și einsteiniu - în onoarea fizicienilor Enrico Fermi și Albert Einstein.

Curium

Elementul a fost obținut în 1944 de un grup de fizicieni americani condus de Glenn Seaborg prin bombardarea plutoniului cu nuclee de heliu. A fost numit după Pierre și Marie Curie. În tabelul elementelor, curiumul este situat direct sub gadoliniu - așa că atunci când oamenii de știință au venit cu un nume pentru noul element, probabil că au avut în vedere și faptul că gadoliniu a fost primul element numit după om de știință. În simbolul elementului (Cm), prima literă reprezintă numele de familie Curie, a doua literă reprezintă prenumele Marie.

Mendeleviu

A fost anunțat pentru prima dată în 1955 de grupul lui Seaborg, dar abia în 1958 au fost obținute date fiabile la Berkeley. Numit în onoarea lui D.I. Mendeleev.

Nobeliu

Descoperirea sa a fost raportată pentru prima dată în 1957 de către un grup internațional de oameni de știință care lucrează la Stockholm, care a propus denumirea elementului în onoarea lui Alfred Nobel. Ulterior s-a dovedit că rezultatele obținute au fost eronate. Primele date fiabile despre elementul 102 au fost obținute în URSS de către grupul lui G.N. Flerov în 1966. Oamenii de știință au propus redenumirea elementului în onoarea fizicianului francez Frederic Joliot-Curie și numirea lui joliotium (Jl). Ca compromis, a existat o propunere de a numi elementul Flerovium - în onoarea lui Flerov. Întrebarea a rămas deschisă, iar timp de câteva decenii simbolul Nobelium a fost pus între paranteze. Acesta a fost cazul, de exemplu, în volumul 3 al Enciclopediei chimice, publicat în 1992, care conținea un articol despre Nobelium. Cu toate acestea, de-a lungul timpului, problema a fost rezolvată, iar începând cu volumul 4 al acestei enciclopedii (1995), precum și în alte publicații, simbolul Nobelium a fost eliberat de paranteze. În general, pe problema priorității în descoperirea elementelor transuraniu de multi ani Au fost dezbateri aprinse - vezi articolele „Paranteze în tabelul periodic. Epilog” („Chimie și viață”, 1992, nr. 4) și „De data asta – pentru totdeauna?” („Chimie și viață”, 1997, nr. 12). Pentru numele elementelor de la 102 la 109, decizia finală a fost luată la 30 august 1997. În conformitate cu această decizie, aici sunt date denumirile elementelor supergrele.

Lawrence

Producerea diverșilor izotopi ai elementului 103 a fost raportată în 1961 și 1971 (Berkeley), în 1965, 1967 și 1970 (Dubna). Elementul a fost numit după Ernest Orlando Lawrence, un fizician american și inventator al ciclotronului. Laboratorul Național Berkeley poartă numele lui Lawrence. Timp de mulți ani, simbolul Lr a fost plasat între paranteze în tabelele noastre periodice.

Rutherfordium

Primele experimente pentru obținerea elementului 104 au fost întreprinse în URSS de Ivo Zvara și colegii săi încă din anii 60. G.N. Flerov și colegii săi au raportat că au obținut un alt izotop al acestui element. S-a propus denumirea lui kurchatovium (simbol Ku) - în onoarea liderului proiectului atomic din URSS. I.V. Kurchatova. Cercetătorii americani care au sintetizat acest element în 1969 au folosit o nouă tehnică de identificare, crezând că rezultatele obţinute anterior nu pot fi considerate de încredere. Ei au propus numele de rutherfordium - în onoarea remarcabilului fizician englez Ernest Rutherford, IUPAC a propus numele de dubnium pentru acest element. Comisia internațională a concluzionat că onoarea deschiderii ar trebui să fie împărtășită de ambele grupuri.

Seaborgium

Elementul 106 a fost obținut în URSS. G.N. Flerov și colegii săi în 1974 și aproape simultan în SUA. G. Seaborg și personalul său. În 1997, IUPAC a aprobat denumirea de seaborgiu pentru acest element, în onoarea patriarhului cercetătorilor nucleari americani Seaborg, care a luat parte la descoperirea plutoniului, americiului, curii, berkeliului, californiului, einsteinului, fermiului, mendeleviului și care până la acel moment. avea 85 de ani. Există o fotografie binecunoscută în care Seaborg stă lângă tabelul elementelor și arată cu zâmbet la simbolul Sg.

Borius

Prima informație fiabilă despre proprietățile elementului 107 a fost obținută în Germania în anii 1980. Elementul poartă numele marelui om de știință danez Niels Bohr.

DOSAR TASS. Pe 30 noiembrie, Uniunea Internațională de Chimie Pură și Aplicată (IUPAC) a anunțat aprobarea denumirilor elementelor nou descoperite. tabel periodic Mendeleev.

Al 113-lea element a fost numit nihonium (simbol - Ni, în onoarea Japoniei), al 115-lea - moscovium (Mc, în onoarea regiunii Moscova), 117 - tennessine (Ts, în onoarea statului Tennessee) și al 118-lea - oganesson ( Og, în onoarea savantului rus Yuri Oganesyan).

Editorii TASS-DOSSIER au pregătit o listă cu alte elemente chimice numite după oamenii de știință ruși și nume de locuri.

Ruteniu

Ruteniul (Ruteniu, simbol - Ru) este un element chimic cu număr atomic 44. Este un metal de tranziție de culoare argintie din grupa platinei. Folosit în electronică, chimie, pentru a crea contacte electrice rezistente la uzură, rezistențe. Extras din minereu de platină.

A fost descoperit în 1844 de profesorul de la Universitatea Kazan Carlos Klaus, care a decis să numească elementul în onoarea Rusiei (Rutenia este una dintre variantele numelui latin medieval pentru Rus').

Samariul

Samariul (Samarium, Sm) este un element chimic cu număr atomic 62. Este un metal de pământ rar din grupa lantanidelor. Folosit pe scară largă pentru fabricarea magneților, în medicină (pentru combaterea cancerului), pentru fabricarea casetelor de control de urgență în reactoare nucleare.

A fost deschis în 1878-1880. chimiștii francezi și elvețieni Paul Lecoq de Boisbaudran și Jean Galissard de Marignac. Ei au descoperit un nou element în mineralul samarskite găsit în Munții Ilmen și l-au numit samarium (ca derivat al mineralului).

Cu toate acestea, mineralul în sine, la rândul său, a fost numit după inginerul minier rus, șeful de personal al Corpului inginerilor de mineri Vasily Samarsky-Bykhovets, care l-a predat chimiștilor străini pentru studiu.

Mendeleviu

Mendeleviul (Md) este un element chimic sintetizat cu număr atomic 101. Este un metal radioactiv.

Cel mai stabil izotop al elementului are un timp de înjumătățire de 51,5 zile. Poate fi obținut în condiții de laborator prin bombardarea atomilor de einsteiniu cu ioni de heliu. A fost descoperit în 1955 de oamenii de știință americani de la Laboratorul Național Lawrence Berkeley (SUA).

În ciuda faptului că în acest moment SUA și URSS se aflau într-o stare de război rece, descoperitorii elementului, inclusiv unul dintre fondatorii chimiei nucleare, Glenn Seaborg, au propus să-l denumească după creatorul tabelului periodic, omul de știință rus Dmitri Mendeleev. Guvernul SUA a fost de acord și, în același an, IUPAC a dat elementului numele de Mendelevium.

Dubniy

Dubniul (Db) este un element chimic sintetizat cu număr atomic 105, un metal radioactiv. Cel mai stabil dintre izotopi are un timp de înjumătățire de aproximativ 1 oră. Se obține prin bombardarea nucleelor ​​de amereu cu ioni de neon. A fost descoperit în 1970 în timpul experimentelor independente de către fizicienii de la Laboratorul de reacție nucleară al Institutului Comun de Cercetare Nucleară din Dubna și Laboratorul Berkeley.

După mai bine de 20 de ani de dispută cu privire la primatul în descoperire, IUPAC în 1993 a decis să recunoască ambele echipe drept descoperitori ai elementului și să-l numească în onoarea lui Dubna (în timp ce Uniunea Sovietică a propus să-i denumească nilsbohrium în onoarea fizicianului danez). Niels Bohr).

Flerovium

Flerovium (Fl) este un element chimic sintetizat cu număr atomic 114. O substanță foarte radioactivă cu un timp de înjumătățire de cel mult 2,7 secunde. A fost obținut pentru prima dată de un grup de fizicieni de la Institutul Comun de Cercetare Nucleară din Dubna, sub conducerea lui Yuri Oganesyan, cu participarea oamenilor de știință de la Laboratorul Național Livermo din SUA) prin fuziunea nucleelor ​​de calciu și plutoniu.

Numit la propunerea oamenilor de știință ruși în onoarea unuia dintre fondatorii institutului din Dubna, Georgy Flerov.

Moscovium și Oganesson

Pe 8 iunie, un comitet al Uniunii Internaționale de Chimie Pură și Aplicată a recomandat ca cel de-al 115-lea element al tabelului periodic să fie numit moscovium în onoarea regiunii Moscova, unde se află Institutul Comun de Cercetare Nucleară (orașul Dubna).

Organizația a propus să numească cel de-al 118-lea element Oganesson în onoarea descoperitorului său, academicianul Academiei Ruse de Științe Yuri Oganessan.

Ambele elemente chimice sunt sintetizate cu un timp de înjumătățire care nu depășește câteva fracțiuni de secunde. Au fost descoperite la Laboratorul de Reacții Nucleare al Institutului Comun de Cercetare Nucleară din Dubna în timpul experimentelor din 2002-2005. Denumirile propuse de IUPAC au fost supuse discuțiilor publice și au fost aprobate de IUPAC pe 28 noiembrie 2016.

De asemenea, până în 1997, în URSS și Rusia, elementul sintetizat cu număr atomic 104 a fost numit kurchatovium, în onoarea fizicianului Igor Kurchatov, dar IUPAC a decis să-l denumească în onoarea fizicianului britanic Ernest Rutherford - rutherfordium.

Nou elementele tabelului periodic va primi astăzi la Moscova nume oficiale. Ceremonia va avea loc la Casa Centrală a Oamenilor de Știință a Academiei Ruse de Științe.

În anii 2000 fizicieni din Dubna(regiunea Moscova) împreună cu colegii americani din Laboratorul Național Livermore primit al 114-leaŞi Elementele 116 .

Elementele vor fi denumite după laboratoarele în care au fost create. Al 114-lea element a fost numit „ flerovium"- în onoare Laboratorul de Reacții Nucleare numit după. G.N. Flerova Institutul Comun pentru Cercetări Nucleare, unde a fost sintetizat acest element. Al 116-lea element a fost numit „ livermorium„ – în onoarea oamenilor de știință de la Laboratorul Național Livermore care l-au descoperit.

Uniunea Internațională de Chimie Pură și Aplicată a desemnat noile elemente ca FlŞi Lv.

Am sunat Institutul Comun pentru Cercetări Nucleare.

Nu este nimeni, au spus ei secretar de presă al institutului Boris Starchenko. - Toată lumea a plecat la Academia de Științe și se va întoarce abia mâine.

- Spune-mi, este prima dată când ai avut o asemenea bucurie la institut?

Nu, nu este prima dată când avem o asemenea bucurie. Acum cincisprezece ani, al 105-lea element al sistemului de elemente din D.I. Mendeleev a primit numele "Dubniy". Anterior, acest element se numea Nilsborium, dar a fost redenumit pentru că oamenii de știință au fost cei care au reușit să obțină elementul la acceleratorul nostru.

Boris Mihailovici se grăbea să participe la ceremonie, dar înainte de a închide telefonul, a reușit să spună că, pe lângă 105, 114 și 116 elemente, oamenii de știință de la Dubna au fost primii din lume care au sintetizat elemente supergrele noi, cu viață lungă, cu numere de serie 113 , 115 ,117 Şi 118 .

OPINIREA EXPERTILOR

Este acest eveniment atât de important pentru știința rusă? Nu este aceasta o ficțiune, ca filtrele lui Petrik și alte pseudo-realizări ale gândirii noastre științifice? Am întrebat despre asta Evgeniy Gudilina, decan adjunct al Facultății de Științe a Materialelor, Universitatea de Stat din Moscova.

Despre ce vorbești, asta nu este o ficțiune, ci un mare eveniment în stiinta ruseasca. Descoperirea acestor elemente și denumirea lor este o chestiune de prestigiu. Doar imaginați-vă. Aceste nume sunt imprimate pe tabelul periodic. Pentru totdeauna. Vor fi studiati la scoala.

- Spune-mi, de ce au fost atribuite nume doar elementelor 114 și 116? Unde s-a dus al 115-lea?

De fapt, oamenii de știință de la Dubna au obținut 115, 117 și 113 și 118 elemente. Și ei vor primi într-o zi nume. Problema este că procedura de denumire este foarte lungă. Durează ani de zile. Conform regulilor, înainte ca un nou „membru” al tabelului periodic să fie recunoscut, acesta trebuie descoperit în alte două laboratoare din lume.

- Este acesta un proces foarte dificil?

Foarte. În natură, există doar primele 92 de elemente ale sistemului periodic. Restul sunt obținute artificial în reactii nucleare. De exemplu, acceleratorul din Dubna a accelerat atomii la viteze apropiate de viteza luminii. După ciocnire, nucleele s-au lipit împreună în formațiuni mai mari. Aceste formațiuni nu trăiesc foarte mult. Câteva fracțiuni de secundă. În acest timp, este posibil să obțineți câteva informații despre proprietățile lor.

Spune-mi, de ce să selectezi elemente noi? Profesorul meu de chimie a spus că, în principiu, toate proprietățile elementelor au fost prezise cu mult timp în urmă de către fizicieni și, prin urmare, este complet inutil să le obținem „pe viu”...

Ei bine, să spunem că profesorul a exagerat. Calcula proprietăți chimice elementele este posibilă numai cu o precizie scăzută. Moleculele cu nuclee grele sunt greu de descris.

- Dar dacă un element există pentru o fracțiune de secundă, cum poți reuși să-i descrii proprietățile în acest timp?

Acest timp este adesea suficient pentru a demonstra că elementul este similar cu unul sau altul analog.

- Spune-mi, există o limită a tabelului periodic sau poate fi extins la infinit?

Există o limită. Există un concept atât de frumos de „insula stabilității”. Acest termen a fost inventat de oamenii noștri de știință din Dubna. Elementele situate în această „insulă” au o durată de viață relativ lungă. În acele câteva fracțiuni de secundă pe care le trăiesc, poți reuși să-i „identifici” și să-i caracterizezi. Acum oamenii de știință au obținut aproape toate elementele din insula stabilității. Dar există suspiciuni că există o altă insulă de stabilitate. Este situat mai departe de 164 de camere...

APROPO

ÎN Tabel periodic Mendeleev există o serie de elemente numite după oamenii de știință ruși.

Ruteniu, element cu numărul de serie 44. Numit după Rusia. Ruthenia este numele latin pentru Rus'. Descoperit de profesorul de la Universitatea Kazan Karl Klaus în 1844. Klaus a izolat-o din minereul de platină din Ural.

Dubniy, element cu numărul de serie 105, a fost redenumit de trei ori. A fost identificat pentru prima dată în 1967 de oamenii de știință din Dubna. Două luni mai târziu, elementul a fost descoperit de către Laboratorul de radiații Ernst Lawrence din Berkeley (SUA). Oamenii de știință din Dubna au numit elementul Nilsborium în onoarea lui Niels Bohr. Colegii americani au sugerat numele Ganiy în onoarea lui Otto Hahn. Sub numele „ganium” 105 apare elementul în Sistemul american Mendeleev. În 1997, Societatea Internațională de Chimie Pură și Aplicată a rezolvat discrepanțele în numele elementelor. Cel de-al 105-lea element a devenit dubniu în cinstea Dubnei, locul său de origine.

Kurceatovy. Acest nume ar fi trebuit dat celui de-al 104-lea element al sistemului. Chimiștii sovietici l-au primit în 1964 și au propus un nume în onoarea marelui Igor Vasilyevich Kurchatov. Cu toate acestea, Uniunea Internațională de Chimie Pură și Aplicată a respins numele. Americanii nu au fost fericiți că elementul a fost numit după creatorul bombei atomice. Acum elementul 104 din sistemul periodic se numește „Rutherfordium”.

Mendeleevium, al 101-lea element al sistemului, a fost izolat de americani în 1955. Conform regulilor, dreptul de a numi un element nou aparține celor care l-au descoperit. Ca recunoaștere a meritelor marelui Mendeleev, oamenii de știință au propus numirea elementului Mendeleev. Timp de aproape zece ani, sinteza acestui element a fost considerată apogeul deprinderii experimentale.

Începând cu anii 1960, au existat dispute între Universitatea din California (SUA) și institutul din Dubna cu privire la numele elementelor care urmează fermiului în tabelul periodic, care este numărul 100. După cum reiese din publicațiile interne de popularitate despre chimie, „ înÎn conflictul prioritar dintre oamenii de știință noștri și americani privind descoperirea elementelor nr. 102...105, nu există încă un arbitru competent și independent. Problema numelui final și corect al celor mai grele elemente chimice rămâne nerezolvată”.