План-конспект урока по физике (10 класс) на тему: "Основные положения молекулярно-кинетической теории и их опытное подтверждение.". Основные положения молекулярно-кинетической теории и её опытное подтверждение Опыт бриджмена просачивание масла через сталь

МОЛЕКУЛЯРНАЯ ФИЗИКА
ТЕПЛОВЫЕ ЯВЛЕНИЯ

Основные положения молекулярно-кинетической теории

и их опытное подтверждение.

Цели урока:

1.Познакомить учащихся с основными положениями молекулярно- кинетической теории и их опытными подтверждениями.

2. Продолжить работу над развитием памяти, внимания, речи, мышления, интереса к физике через показ опытов.

3. Продолжить формирование воли, усидчивости, стремления к знаниям,

ответственного отношения к учёбе.

Тип урока : урок изучения нового материала.

Демонстрации: 1.Фрагмент видеофильма «Броуновское движение».

2.Диффузия в жидкостях и газах.

3.Взаимодействие частиц тела.

План урока:

  1. Изложение нового материала.
  2. Контрольные вопросы по изложенной теме.
  3. Решение качественных задач.
  4. Домашнее задание

План изложения нового материала: 1. Введение.

2. Историческая справка.

3. Основные положения МКТ.

Ход урока: (Слайд №1)

  1. Изложение нового материала .

1. Введение.

Мы живём в мире макроскопических тел. Механика изучает движение макроскопических тел – перемещение одних тел относительно других в пространстве с течением времени. Но она не в состоянии объяснить, почему существуют твёрдые тела, жидкости и газы и почему эти тела могут переходить из одного состояния в другое.

В механике говорят о силах, как о причинах изменения скорости, не выясняя природу этих сил. Остаётся непонятным, почему при сжатии тел появляются силы упругости, почему возникает сила трения. На эти и многие другие вопросы можно будет ответить, изучив раздел «Молекулярная физика».

После механического движения самые заметные явления связаны с нагреванием или охлаждением тел, с изменением их температуры. Эти явления называются тепловыми. Тепловые явления происходят внутри тел и всецело определяются тепловым движением частиц, из которых состоит это тело.

Значение тепловых явлений. Привычный облик нашей планеты существует и может существовать только в довольно узком интервале температур. Если бы температура превысила 100°С, то на Земле при обычном атмосферном давлении не было бы рек, морей и океанов, не было бы воды вообще, Вся вода превратилась бы в пар. При понижении температуры на несколько десятков градусов океаны превратились бы в ледники.

Ещё более узкие интервалы температур необходимы для поддержания жизни теплокровных животных. Температура животных и человека поддерживается внутренними механизмами терморегуляции на строго определённом уровне. Достаточно температуре повыситься на несколько десятых градуса, как мы чувствуем себя нездоровыми. Изменение же на несколько градусов ведет к гибели организма.

Изменение температуры оказывает влияние на все свойства тел. Так, при нагревании или охлаждении изменяются размеры тел и объёмы жидкостей. Значительно меняются механические свойства тел, например упругость, сопротивление электрическому току, магнитные свойства и др.

Все перечисленные выше и многие другие тепловые явления подчиняются определённым законам, которые мы будем изучать в разделе «Молекулярная физика». Начнём изучение раздела с темы «Основные положения молекулярно-кинетической теории и их опытное подтверждение».

(Слайд №2) 2. Историческая справка.

МКТ объясняет тепловые явления, свойства тел на основе представления о том, что все тела состоят из хаотически движущихся частиц.

Историческая справка:

В V в до н. э. древнегреческим учёным Демокритом была выдвинута атомистическая гипотеза: всё в мире состоит из атомов; между атомами находится пустота. Аргументы в пользу учения Демокрита можно найти в в знаменитой поэме древнеримского поэта Лукруция Кара «О природе вещей»:

… одежда сыреет на морском берегу,

А на солнце она высыхает.

Однако видеть нельзя,

Как влага на ней оседает и как она исчезает.

Значит, дробится вода на такие мельчайшие части,

Что недоступны они для нашего глаза.

IV в. до н. э. Аристотель – отверг гипотезу Демокрита.

Через полторы тысячи лет после появления атомистической гипотезы в средневековой Франции издаётся указ о запрещении распространении учения об атомах под страхом смертной казни. Церковь уничтожает все ростки нового и прогрессивного, не укладывающиеся в систему религиозных представлений о мире.

Только в XVII в. начала развиваться последовательная молекулярно – кинетическая теория. Большой вклад в развитие этой теории был сделан великим русским учёным - М.В. Ломоносовым. Он объяснил основные свойства газа беспорядочным движением молекул. Впервые им была объяснена природа теплоты.

3. Основные положения МКТ.

В основе МКТ лежат три важнейших положения: (Слайд №3)

  1. все вещества состоят из мельчайших частиц (атомов, молекул, электронов, ионов);
  2. частицы вещества находятся в непрерывном хаотическом движении (его часто называют тепловым движением);
  3. частицы вещества взаимодействуют друг с другом.

4. Опытное подтверждение МКТ. (Слайд №4)

Первое положение

1. Предположение о молекулярном строении вещества подтверждалось только косвенно. Размеры молекул и атомов так малы, что различить их в обычный микроскоп невозможно. Поэтому даже в XIX-м веке многие ученые еще сомневались в существовании молекул. Сегодня техника достигла уровня, при котором можно рассмотреть даже отдельные атомы при помощи ионных и электронных микроскопов. Убедиться в существовании молекул и оценить их размер можно довольно просто. Поместим очень маленькую капельку масла на поверхность воды. Масляное пятно будет растекаться по поверхности воды, но площадь масляной пленки не может превышать определенного значения. Естественно предположить, что максимальная площадь пленки соответствует масляному слою толщиной в одну молекулу. Например, капелька оливкового масла объемом 1 мм 3 растекается по площади не более 1 м 2 . Отсюда следует, что размер молекулы масла порядка 10 -9 м.

2. Ещё одно подтверждение - опыт Бриджмена: масло, налитое в стальной сосуд сдавливают под сверхвысоким давлением, и замечают, что капельки масла появились на стенках сосуда. Вывод: масло состоит из мельчайших частиц, которые смогли пройти через промежутки между частицами стального сосуда.

Второе положение доказывает явление диффузии - взаимного проникновения молекул одного вещества в промежутки другого вещества.

1. Убедиться в том, что молекулы движутся, можно совсем просто: капните капельку духов в одном конце комнаты, и через несколько секунд этот запах распространится по всей комнате. В окружающем нас воздухе молекулы носятся со скоростями артиллерийских снарядов - сотни метров в секунду.

В жидкостях диффузия происходит медленнее. В стеклянный сосуд наливают водный раствор медного купороса. Этот раствор имеет темно-голубой цвет. Поверх раствора в сосуд очень осторожно, чтобы не смешать жидкости, наливают чистую воду. Медный купорос тяжелее воды и потому остается внизу сосуда. В начале опыта между двумя жидкостями видна резкая граница. Оставим сосуд в покое. Через несколько дней можно заметить, что граница раздела между жидкостями расплылась. А недели через две эта граница вообще исчезнет, и в сосуде будет находиться однородная жидкость бледно-голубого цвета. Итак, причиной диффузии является непрерывное и беспорядочное движение частиц вещества. При диффузии частицы одного вещества проникают в промежутки между частицами другого вещества, и вещества перемешиваются.

Медленнее всего диффузия происходит в твердых телах. В одном из опытов гладко отшлифованные пластины свинца и золота положили одна на другую и сжали грузом. Через пять лет золото и свинец проникли друг в друга на 1 мм.

Скорость протекания диффузии увеличивается с ростом температуры.

Диффузия имеет большое значение в процессах жизнедеятельности человека, животных и растений. Например, именно благодаря диффузии кислород из легких проникает в кровь человека, а из крови - в ткани.

2. В начале XIX-го века английский ботаник Броун, наблюдая в микроскоп частицы пыльцы, взвешенные в воде, заметил, что эти частицы пребывают в «вечной пляске». Причину так называемого «броуновского движения» поняли только через 50 лет после его открытия: отдельные удары молекул жидкости о частицу не компенсируют друг друга, если эта частица достаточно мала. С тех пор броуновское движение рассматривается как наглядное опытное подтверждение теплового движения молекул.

Внимание на экран. Посмотрите фрагмент видеофильма «Броуновское движение».

(Слайд №5)

Докажем третье положение.

(Слайд №6)

Поставим опыты.

1. Чтобы получить некоторое представление о величине сил взаимодействия между молекулами, попробуйте разорвать стальную или капроновую нить сечением 1 мм 2 . Немногие смогут это сделать, а ведь усилиям всего вашего тела «противостоят» силы притяжения молекул в малом сечении нити!

2. Если плотно прижать друг к другу свинцовые цилиндры с хорошо зачищенными торцами, они «сцепляются» настолько прочно, что к ним можно подвешивать килограммовую гирю (см. рисунок). Этот опыт также свидетельствует о наличии сил межмолекулярного притяжения.

Если бы молекулы не притягивались друг к другу, не было бы ни жидкостей, ни твердых тел - они просто рассыпались бы на отдельные молекулы. С другой стороны, если бы молекулы только притягивались, они «слипались» бы в чрезвычайно плотные сгустки, а молекулы газов при ударах о стенки сосуда «прилипали» бы к ним. Взаимодействие молекул имеет электрическую природу. Хотя молекулы, в целом, электрически нейтральны, распределение положительных и отрицательных электрических зарядов в них таково, что на больших расстояниях (по сравнению с размерами самих молекул) молекулы притягиваются, а на малых расстояниях - отталкиваются.

(Слайд №7)

На рисунке приведена качественная зависимость сил межмолекулярного взаимодействия от расстояния r между молекулами, где F о и F п - соответственно силы отталкивания и притяжения, F - их результирующая. Силы отталкивания считаются положительными, а силы взаимного притяжения - отрицательными.

На расстоянии r = r о результирующая сила F = 0, т.е.силы притяжения и отталкивания уравновешивают друг Друга. Таким образом, расстояние г 0 соответствует равновесному расстоянию между молекулами, на котором бы они находились а отсутствие теплового движения. При r г 0 преобладают силы отталкивания (F > 0), при r>r 0 - силы притяжения (F О). На расстояниях г > 10 -9 м межмолекулярные силы взаимодействия практически отсутствуют (F →0).

(Слайд №8)

Ярким примером различного взаимодействия молекул является то, что вещество может находиться в различных агрегатных состояниях. Например: лёд, вода и водяной пар.

Лёд, вода и водяной пар состоят из одних и тех же молекул. Различие заключается в скорости молекул, их взаимном расположении и силах взаимодействия между ними.

  1. Ответьте на контрольные вопросы по изложенной теме.

(Слайд №9)

  1. Какова цель МКТ?
  2. Назовите основные положения МКТ.
  3. Перечислите известные вам доказательства существования молекул.
  4. В чём состоит явление диффузии?
  5. В чём состоит суть броуновского движения?
  6. Какие опыты доказывают, что между молекулами твёрдых и жидких тел действуют силы притяжения и отталкивания?
  1. Решите качественные задачи. (Слайд №10,11)

1. Почему запах только что пролитых духов обнаруживается в другом конце комнаты только через несколько минут, хотя скорость движения молекул при комнатной температуре составляет несколько сотен метров?

2. Две стеклянные пластинки трудно оторвать друг от друга, если между ними есть немного воды. Если же стёкла сухие, то они отделяются друг от друга без труда. Почему?

3. Почему полировка трущихся поверхностей может привести не к уменьшению трения, а, наоборот, к увеличению?

4. На чём основан процесс растворения сахара в воде?

5. Что можно сказать о размерах, составе и силах взаимодействия молекул одного и того же вещества в разных состояниях? Ответ пояснить.

6. Вода легко удаляется с чистой поверхности стекла. Удалить с той же поверхности жир практически невозможно. Как это объяснить с молекулярной точки зрения?

7. Чем объяснить, что пыль не спадает даже с поверхности, обращённой вниз?

8. Почему слышен хруст при разламывании прутика?

  1. Домашнее задание: § 57,58,60,61 Р.№ 450 - 453.

Суть данного метода заключается в том, что зарождающиеся в нижней части тигля с расплавом монокристаллы служат затравкой. Тигель опускается в более холодную зону печи. Нижняя часть тигля – коническая. Скорость выращивания – также несколько мм/час.

Схема установки для выращивания монокристаллов по методу Стокаберга-Бриджмена: 1 - тигель с расплавом, 2 - кристалл, 3 - печь, 4 - холодильник, 5 - термопара, 6 - тепловой экран.

Метод Вернейля

Метод Вернейля реализуется путем просыпки маленьких порций порошковой шихты в трубчатую печь, где эта шихта расплавляется во время падения в кислородно - водородном пламени и питает каплю расплава на поверхности затравки. Затравка при этом вытягивается постепенно вниз, а капля пребывает на одном и том же уровне по высоте печи.

Преимущества :

    отсутствие флюсов и дорогостоящих материалов тиглей;

    отсутствие необходимости точного контроля температуры;

    возможность контроля за ростом монокристалла.

Недостатки :

    из-за высокой температуры роста кристаллы имеют внутренние напряжения;

    стехиометрия состава может нарушаться вследствие восстановления компонентов водородом и испарения летучих веществ.

Скорость выращивания – несколько мм/час.


На рисунках показан принцип выращивания монокристаллов по методу Вернейля и установочное оборудование.

Метод зонной плавки

Зонная плавка заключается в прогонке зоны расплава по длине заготовки монокристалла, одновременно в зоне расплава концентрируются примеси и происходит очистка кристалла, конечную часть которого затем удаляют. Нагрев осуществляется индукционным, радиационно-оптическим или другим методом.


Схема устройства для зонной плавки: 1 - затравка, 2 - расплав, 3 – поликристаллический слиток, 4 – нагреватель (стрелкой показано направление движения нагревателя).

Система для индукционной зонной плавки германия Гидротермальное выращивание

Гидротермальный метод выращивания кристаллов используется для выращивания кристаллов, которые трудно или невозможно вырастить другими методами, так как наиболее близко имитирует процессы образования минералов в природе. В основе его лежит тот факт, что при высоких температурах (до 700 °С) и давлениях (до 3000 атм.) водные растворы солей способны активно растворять соединения, практически нерастворимые при нормальных условиях. Для гидротермального выращивания кристаллов используют специальные прочные стальные сосуды – автоклавы, способные выдержать такие экстремальные давления и температуры.

Наиболее распространенной является модификация гидротермального метода, называемая методом перекристаллизации в условиях положительного температурного градиента. Суть его заключается в следующем:

На дне автоклава, нагреваемого снизу и охлаждаемого сверху, размещается растворяемое вещество – шихта. Над ней расположены затравки (пластины, выпиленные по определенному направлению из кристалла выращиваемого вещества). В автоклаве создается разность температур (нижняя зона более горячая), чему способствует диафрагма – перегородка с отверстиями, разделяющая верхнюю и нижнюю зоны. Раствор циркулирует между гранулами шихты, насыщаясь веществом выращиваемого кристалла. Одновременно происходит нагревание гидротермального раствора. Горячий (и потому – более легкий) раствор поступает в верхнюю часть автоклава, где остывает.

Растворимость кристаллизуемого вещества с понижением температуры снижается, избыток растворенного вещества отлагается на затравки. Холодный высокоплотный обедненный раствор опускается в нижнюю часть автоклава и цикл повторяется. Процесс ведется до полного переноса вещества шихты на затравки. В результате этих процессов и растет кристалл. Скорость выращивания составляет от долей мм до нескольких мм в сутки. Выращиваемые монокристаллы обычно имеют высокое качество и характерную кристаллографическую огранку, т.к. растут в условиях более или менее близких к равновесным.

Схема автоклава для гидротермального синтеза: 1 - раствор, 2 - криcталл, 3 - печь, 4 - вещество для кристаллизации (T 1 2 ).

Американский физик Перси Уильямс Бриджмен родился в Кембридже (штат Массачусетс). Он был единственным ребенком Раймонда Ландона Бриджмена, газетного репортера, публициста, и Мэри Энн Марии Бриджмен, в девичестве Уильямс. Вскоре после его рождения семья переехала в г. Ньютон, где Б. рос, посещая приходскую церковь, играя в шахматы и занимаясь спортом. Учитель средней школы в Ньютоне посоветовал ему выбрать своей стезей науку.

В 1990 г. Б. поступил в Гарвардский университет, положив начало своему длительному сотрудничеству с этим учебным заведением. Он выбрал для изучения химию, математику и физику, получив с отличием диплом бакалавра в 1904 г. В следующем году ему была присвоена степень магистра, а в 1908 г. он стал доктором наук, защитив диссертацию о влиянии давления на электрическое сопротивление ртути. Начав свою карьеру научным сотрудником в 1908 г., Б. в 1910 г. становится преподавателем, в 1913 г. – ассистент-профессором, в 1919 г. – профессором, в 1950 г. – университетским профессором и в 1954 г. – почетным профессором в отставке.

Результат его научной работы огромен – 260 статей и 13 книг, что не в последнюю очередь связано с его отказом от всех общественных обязанностей: его никогда не видели на факультетских собраниях и очень редко – в университетском комитете. Заявление: «Меня не интересует ваш колледж, я хочу заниматься исследованиями», которое он сделал ректору университета Эбботту Лоуренсу Лауэллу, характеризует его как индивидуалиста, что выражалось также в его нежелании проводить совместные исследования или брать более самого необходимого числа аспирантов.

В 1905 г. Б. изобрел герметизированный метод изоляции сосудов с газом, находящимся под высоким давлением. Принцип конструкции Б. состоял в том, что изолирующая прокладка, сделанная из резины или мягкого металла, была сжата под давлением большим, чем давление внутри сосуда. Запечатывающая пробка автоматически уплотняется по мере возрастания давления и никогда не дает течи независимо от величины давления, пока выдерживают стенки сосуда.

Создание высокопрочных закаленных легированных стальных сплавов, содержащих карбид вольфрама с кобальтовой добавкой (карболой), позволило Б. использовать свои постоянно совершенствуемые аппараты для измерения сжимаемости, плотности и точки плавления сотен материалов в зависимости от давления и температуры. В своих работах он установил, что многие материалы под действием высокого давления становятся полиморфными, их кристаллическая структура меняется, допуская более плотную упаковку атомов в кристалле. Его исследования порожденного давлением полиморфизма вскрыли две новые формы фосфора и «горячий лед» – лед, который устойчив при 180° по Фаренгейту и давлении около 20 тыс. атмосфер. В последующие годы исследователи, используя высокое давление, создали синтетические алмазы, кубические кристаллы нитрида бора и высококачественные кристаллы кварца. Б. обнаружил, что высокое давление может повлиять даже на электронную структуру атомов, как это видно на примере уменьшения атомного объема элемента цезия при 45 тыс. атмосфер. Его исследования доказали, что при высоких давлениях, существующих в недрах Земли, должны происходить радикальные изменения в физических свойствах и кристаллической структуре горных пород.
С помощью оборудования двойного сжатия, где мощный компрессор действует внутри сосуда с высоким давлением, Б. легко получал в небольших объемах давление около 100 тыс. атмосфер. Время от времени он изучал воздействие на вещество давлений, достигающих 400 тыс. атмосфер.

В 1946 г. Б. был награжден Нобелевской премией по физике «за изобретение прибора, позволяющего создавать сверхвысокие давления, и за открытия, сделанные в связи с этим в физике высоких давлений». В речи на церемонии награждения А.Е. Линд из Шведской королевской академии наук поздравил Б. с «выдающейся исследовательской работой в области физики высоких давлений». Он сказал: «С помощью вашего оригинального прибора в соединении с блестящей экспериментаторской техникой вы весьма существенно обогатили наши знания о свойствах материи при высоких давлениях».

Во время первой мировой войны Б., работая в Нью-Лондоне (штат Коннектикут), создал систему звукового обнаружения для противолодочной борьбы. Во время второй мировой войны он работал над проблемой сжимаемости урана и плутония, внеся тем самым свой вклад в создание первой атомной бомбы.

В 1912 г. Б. женился на Оливии Уэр, дочери Эдмунда Уэра, основателя Атлантского университета. У них были сын и дочь. Живя с семьей то в Кембридже, то в своем летнем доме в Рандолфе (штат Нью-Гемпшир), Питер, как его называли со студенческих лет, уделял много времени работе в саду, альпинизму, фотографии, шахматам, игре в ручной мяч, а также любил читать детективы и играть на фортепьяно.

В возрасте 79 лет, через 7 лет после своей отставки, Б. узнал, что болен раком и что ему осталось жить несколько месяцев. Быстро теряя способность ходить и не найдя доктора, который облегчил бы ему уход из жизни, Б. покончил с собой 20 августа 1961 г. Он оставил записку, где говорилось: «Не очень порядочно со стороны общества заставлять человека самого делать подобные вещи. Вероятно, это последний день, когда я мог сделать это сам. П.У.Б.».

Б. был членом Национальной академии наук, Американского философского общества. Американской академии наук и искусств. Американской ассоциации содействия развитию науки и Американского физического общества. Он был иностранным членом Лондонского королевского общества. Национальной академии наук Мексики и Индийской академии наук. Среди его многочисленных наград были медаль Румфорда Американской академии наук и искусств (1917 г.), медаль Эллиота Крессона Франклиновского института (1932 г.), премия Комстока Национальной академии наук (1933) и научная награда Американской исследовательской корпорации (1937 г.). Он обладал почетными степенями Бруклинского политехнического института, Гарвардского университета, Принстонского университета, Йельского университета и Стивенсовского технологического института.

Тема 1. Основы молекулярно - кинетической теории

Основные положения МКТ

1.Все вещества состоят из частиц, между которыми есть промежутки.

2.Частицы в любом веществе непрерывно и хаотично движутся.

3.Частицы взаимодействуют друг с другом.

Некоторые опытные обоснования этих положений

Косвенные доказательства:

1. сжимаемость тел при деформации (особенно хорошо сжимаются газы, при этом уменьшаются расстояния между их частицами);

2. дробление вещества (пределом дробления в молекулярной физике являются молекула или атом);

3. расширение и сжатие тел при изменении температуры (изменение расстояния между молекулами);

4. испарение жидкостей (переход отдельных молекул жидкости в газообразное состояние);

5. диффузия – взаимное проникновение соприкасающихся веществ, обусловленное хаотичным движением молекул: быстрее всего самопроизвольное перемешивание веществ происходит в газах (минуты), медленнее в жидкостях (недели), очень медленно в твёрдых телах (годы), диффузия ускоряется с увеличением температуры;

6. броуновское движение – беспорядочноедвижение очень маленьких частиц твёрдого тела, находящихся во взвешенном состоянии в жидкости или газе, непрерывное, неуничтожимое, зависящее от температуры: становится интенсивнее при её увеличении. Объясняется тем, что каждая броуновская частица находится в окружении хаотично движущихся молекул, толчки которых приводят к её беспорядочному движению;

7. слипание свинцовых цилиндров, прилипание стекла к воде (происходят за счёт притяжения молекул);

8. сопротивление растяжению и сжатию, малая сжимаемость твёрдых тел и жидкостей доказывают то, что молекулы взаимодействуют.

Прямые доказательства:

1. наблюдение строения вещества в электронный микроскоп, фотографии отдельных больших молекул;

2. опыт Бриджмена (просачивание масла через стальные стенки сосуда под давлением атм.);

3. измерены параметры атомов и молекул – диаметр, масса, скорость.

Размеры атома порядка или см

Силы взаимодействия молекул – это силы притяжения и отталкивания. Причина возникновения сил - электромагнитные взаимодействия электронов и ядер соседних молекул: отталкивание

+ - отталкивание- +

притяжение

Силы межмолекулярного взаимодействия короткодействующие: они действуют на расстояниях, сравнимых с размерами молекул или атомов. Эти силы зависят от расстояния между этими частицами:

1. на расстоянии равном диаметру молекулы силы притяжения и отталкивания молекул равны, результирующая сила молекулярного взаимодействия равна нулю

= ,

2. на расстоянии чуть больше диаметра молекулы силы притяжения преобладают над силами отталкивания, в результате между молекулами действует сила притяжения

Сила притяжения;

3. на расстоянии меньше диаметра молекулы силы отталкивания преобладают над силами притяжения, в результате между молекулами действует сила отталкивания

Сила отталкивания;

4. на расстоянии много больше размеров молекул силы притяжения и отталкивания прекращают действовать

5. при сближении молекул, когда причём сила отталкивания растёт быстрее, результирующая сила взаимодействия молекул , проявляясь в виде силы отталкивания, становится бесконечно большой.

Основные понятия МКТ

1.Абсолютная масса молекулы ( )

Абсолютная масса молекулы или просто масса молекулы вещества очень мала, например, ( O) .

2.Относительная молекулярная масса ( ) отношение массы молекулы данного вещества к массы атома углерода : = ;

= ( - атомная единица массы).

Зная химическую формулу вещества, можно найти относительную молекулярную массу как сумму относительных масс атомов, из которых состоит молекула. Относительные атомные массы веществ берутся в таблице Менделеева. Например, () = 16 ·2 =32; () =1·2 + 16 =18.

3.Количество вещества ( отношение числа молекул данного вещества к постоянному числу Авогадро : ; постоянная Авогадро показывает, сколько молекул содержится в одном моле любого вещества, = .

Моль количество вещества, содержащееся в 12г углерода .

4.Молярная масса вещества ( ) масса одного моля вещества : Молярную массу можно найти, зная, что = кг/моль. Например, = кг/моль; O) = 18 кг/моль.

5.Масса вещества ( : N;

6.Число молекул или атомов( : ;

Агрегатные состояния вещества (фазы вещества)

твёрдое жидкое газообразное плазменное

Фазовый переход – переход вещества из одного агрегатного состояния в другое.

Например, при нагревании твёрдое вещество можно перевести в жидкое состояние, жидкое в газообразное, а газ в плазменное состояние. Плазма – это частично или полностью ионизированный газ, т. е. электронейтральная система, состоящая из нейтральных атомов и заряженных частиц (ионов, электронов и т. д.)

В молекулярной физике изучаются три фазы состояния вещества: газ, жидкость и твердое тело. Основные свойства газов: 1. не имеют постоянного объёма, занимают весь предоставленный, неограниченно расширяясь; 2. не имеют постоянной формы, принимают форму сосуда; 3. легко сжимаются; 4. оказывают давление на все стенки сосуда.

Основные свойства жидкостей: 1. сохраняют постоянный объём; 2. не имеют постоянной формы, принимают форму сосуда; 3. практически не сжимаемы; 4. текучи.

Основные свойства твёрдых тел: 1. имеют постоянный объём; 2. сохраняют постоянную форму; 3. имеют правильную геометрическую форму кристаллов.

Свойства веществ в различных агрегатных состояниях можно объяснить, зная особенности их внутреннего строения.

Агрегатное состояние Расстояние между частицами Взаимодействие частиц Характер движения частиц Порядок в расположении частиц
Газы Много больше размеров частиц Слабое притяжение, отталкивание только при соударениях Свободное, поступательное, хаотичное движение с большими скоростями - «бродяги» Нет порядка
Жидкости Сравнимо с размерами частиц Сильное притяжение и отталкивание Колебательно-поступательное движение, т.е. колеблются около положения равновесия и могут перескакивать – «кочевники» Порядок не строгий – «ближний» порядок
Твёрдые тела Меньше размеров частиц, «плотная упаковка» Сильное притяжение и отталкивание (сильнее, чем в жидкости) Ограниченное, совершают колебания около положения равновесия – «оседлые» Строгий порядок – «дальний» порядок (кристаллическая решётка)

Перси Уильямс Бриджемен

Фото с сайта nobelprize.org/

БРИДЖМЕН Перси Уильяме (1882- 1961) - американский физик и философ; профессор математики и естественной философии Гарвардского университета (Кембридж); лауреат Нобелевской премии за работы по физике высоких давлений (1946). В философии Бриджмен - основатель и глава субъективно-идеалистического течения, наз. операционализмом. Философские взгляды Бриджмена изложены в книгах «Логика современной физики» (1927), «Природа физической теории» (1936).

Философский словарь. Под ред. И.Т. Фролова . М., 1991, с. 52.

Бриджмен (Bridgman) Перси Уильяме (21.4. 1882, Кембридж, Массачусетс,- 20. 8. 1961, Рандолф, Нью-Хэмпшир), американский физик и философ. Нобелевская премия по физике (1946). В трактовке познания Бриджмен близок к инструментализму (в истолковании проблемы значения понятий) и к солипсизму (в истолковании опыта). Абсолютизируя эмпирический аспект науки, Бриджмен недооценивал фактическую роль абстрактного мышления и абстракций. Он считал бессмысленными теоретические понятия, неверифицируемые в опыте. Идею связи значения понятия с совокупностью действий (операций), ведущих к их применению, Бриджмен перенёс в методологию науки и теорию познания в качестве общего принципа: определять научные понятия, по Бриджмену, надо не в терминах других абстракций, а в терминах операций опыта (операциональное определение понятий). Этот тезис послужил основой в целом идеалистические программы операционного построения языка науки. См. Операционализм.

Философский энциклопедический словарь. - М.: Советская энциклопедия. Гл. редакция: Л. Ф. Ильичёв , П. Н. Федосеев , С. М. Ковалёв, В. Г. Панов. 1983.

Сочинения: Logic of modern physics, N. Υ., 1927; The nature of some of our physical concepts, N. Y., 1952; Reflections of a physicist, Ν. Υ., 19551; Way things are, Camb., 1959.

Бриджмен (Bridgman) Перси Уильяме (21 апреля 1882 Кембридж, США - 20 августа 1961, Рандолф, Нью-Хэмпшир) - американский физик и философ науки, теоретик операционализма; лауреат Нобелевской премии по физике (1946). Окончил Гарвардский университет (1904), с 1908 преподаватель в нем, с 1919 - профессор. В 1926-35 - профессор математики и философии природы в университете Хиттинса, в 1950-1954 годы - вновь в Гарвардском университете. Член американской Академии искусств и наук, Американского философского общества, а также др. научных обществ.

Бриджмен был экспериментатором в области физики и техники высоких давлений. Широкую известность приобрела его книга «Анализ размерностей» (Dimensional Analysis. New Haven, 1922; рус. пер.: М., 1934). Занимался осмыслением логической структуры, языка и природы физической науки, а также философскими вопросами. Как и неопозитивисты, Бриджмен сосредоточил свое внимание на анализе понятийной структуры физики и поиске эмпирических оснований для теоретических конструктов. В духе инструментализма Бриджмен отождествлял значение понятия с набором операций, при этом определял операционалистский метод как совокупность поэтапных действий - практических и мыслительных экспериментов - по определению значений. Он предполагал, что язык науки должен содержать высказывания, все понятия которого имеют референты. В книге «Способ существования вещей» (The Way Things Are. N.Y., 1959), посвященной общегносеологическим вопросам, Бриджмен определяет философские теории как вербальные эксперименты, свидетельствующие о возможностях мышления и фантазии человека, а также о социальной потребности в таких экспериментах, а не о природе мира.

На операционализм Бриджмена опирался Дж. Дьюи в обосновании своей версии инструментализма. Высокую оценку его теория получила у представителей Венского кружка (Г. Фейгл), а также оказала влияние на исследования в области социологии и психологии (прежде всего бихевиоризм Б. Ф. Скиннера). Развиваемые в книге «Интеллектуальный индивид и общество» (The Intelligent Individual and Society. N.Y., 1938) идеи интеллектуальной свободы и ответственности вызвали широкий резонанс среди американской интеллигенции.

Сочинения: The Logic of Modem Physics. N.Y., 1927; The Physics of High Pressure. N.Y., 1937; The Nature of Thermodynamics. Cambr. Mass., 1941; The Nature of Some our Physical Concepts. N.Y., 1952; Reflections of a Physicis. N.Y., 1950; A Sophisticate"s Primer of Relativity. L., 1962.

Литература: Печенкин А. А. Операционалистская трактовка логики науки у Перси Бриджмена. - В кн.: Концепции науки в буржуазной философии и социологии. Вторая половина XIX-XX в. М., 1974.

Н. С. Юлина

Новая философская энциклопедия. В четырех томах. / Ин-т философии РАН. Научно-ред. совет: В.С. Степин , А.А. Гусейнов , Г.Ю. Семигин. М., Мысль, 2010, т. I, А - Д, с. 310-311.

Бриджемен (Bridgman), Перси Уильямс (21.04.1882 г. Кембридж, шт. Массачусетс – 20.08.1961 г. Рандолф, Нью-Хэмпшир), – американский физик и философ, профессор математики и философии в Гарвардском университете), лауреат Нобелевской премией 1946 года по физике: за усовершенствование методов получения высоких давлений, исследования свойств различных элементов и их соединений под давлением в десятки и сотни тысяч атмосфер, открытие новых модификаций, существующих только при очень высоких давлениях.

Перси Уильямс Бриджмен родился в Кембридже (штат Массачусетс). Он был единственным ребенком Раймонда Ландона Бриджмена, газетного репортера, публициста, и Мэри Энн Марии Бриджмен, в девичестве Уильямс. Вскоре после его рождения семья переехала в г. Ньютон, где Бриджмен рос, посещая приходскую церковь, играя в шахматы и занимаясь спортом. Учитель средней школы в Ньютоне посоветовал ему выбрать своей стезей науку.

В 1900 году Бриджмен поступил в Гарвардский университет, положив начало своему длительному сотрудничеству с этим учебным заведением (1900 – 1954 гг.). Он выбрал для изучения химию, математику и физику, получив с отличием диплом бакалавра в 1904 г.

В 1905 г. Бриджмен изобрел герметизированный метод изоляции сосудов с газом, находящимся под высоким давлением. Принцип конструкции Бриджмена состоял в том, что изолирующая прокладка, сделанная из резины или мягкого металла, была сжата под давлением большим, чем давление внутри сосуда. Запечатывающая пробка автоматически уплотняется по мере возрастания давления и никогда не дает течи независимо от величины давления, пока выдерживают стенки сосуда. За эту работу ему в том же году была присвоена степень магистра.

Создание высокопрочных закаленных легированных стальных сплавов, содержащих карбид вольфрама с кобальтовой добавкой (карболой), позволило Бриджмену использовать свои постоянно совершенствуемые аппараты для измерения сжимаемости, плотности и точки плавления сотен материалов в зависимости от давления и температуры. В своих работах он установил, что многие материалы под действием высокого давления становятся полиморфными, их кристаллическая структура меняется, допуская более плотную упаковку атомов в кристалле.

В 1908 году он стал доктором наук, защитив диссертацию о влиянии давления на электрическое сопротивление ртути, став, таким образом, научным сотрудником университета.

Его исследования порожденного давлением полиморфизма вскрыли две новые формы фосфора и «горячий лед» – лед, который устойчив при 180° по Фаренгейту и давлении около 20 тыс. атмосфер. В последующие годы исследователи, используя высокое давление, создали синтетические алмазы, кубические кристаллы нитрида бора и высококачественные кристаллы кварца. Бриджмен обнаружил, что высокое давление может повлиять даже на электронную структуру атомов, как это видно на примере уменьшения атомного объема элемента цезия при 45 тыс. атмосфер. Его исследования доказали, что при высоких давлениях, существующих в недрах Земли, должны происходить радикальные изменения в физических свойствах и кристаллической структуре горных пород.

В 1910 году Бриджмен становится преподавателем, в 1913 году – ассистент-профессором,

Во время первой мировой войны Бриджмен, работая в Нью-Лондоне (штат Коннектикут), создает систему звукового обнаружения для противолодочной борьбы. В 1919 году становится профессором.

Результат его научной работы огромен – 260 статей и 13 книг, что не в последнюю очередь связано с его отказом от всех общественных обязанностей: его никогда не видели на факультетских собраниях и очень редко – в университетском комитете. Заявление: «Меня не интересует ваш колледж, я хочу заниматься исследованиями», которое он сделал ректору университета, характеризует его как индивидуалиста, что выражалось также в его нежелании проводить совместные исследования или брать более самого необходимого числа аспирантов.

В 1920 году он в области методологии измерений сформулировал и дал систематическое изложение анализа размерностей (метода определения связи между физическими величинами по их размерности). Эта теория явилась результатом формировавшихся философских взглядов Бриджемена. Философская позиция, с которой решались Бриджменом указанная выше проблема, формировалась под влиянием инструментализма Дж. Дьюи , критических исследований в области оснований математики, начатых математическим интуиционизмом, и в особенности – методологических основ относительности теории А. Эйнштейна. Согласно Бриджмену, самым существенным методологическим результатом этой теории явилось указание на связь значения понятия с совокупностью действий (операций), ведущих к применению (или к формированию) понятия в каждом отдельном случае. Эта связь и выражает то, что Бриджмен назвал операциональным определением понятия, выдвинув тезис, согласно которому определение любого научного понятия должно быть только операциональным. Этот тезис послужил основой его, в целом идеалистической, программы операционного построения языка науки. Операционализм оформляется как идейное течение, претендующее на роль философско-методологической основы теоретического естествознания и обществ, наук. Начав с философской критики традиционного взгляда на формулы размерности как на выражение «субстанциальных свойств» физических величин и опираясь на установленную им зависимость размерностей от операций измерения, Бриджмен перенёс идею операционального определения понятий в методологию науки и в теорию познания в качестве общего принципа: «непогрешимое» определение понятий достигается не в терминах свойств, а в терминах операций опыта. Например, понятие длины, определяемое через абстракцию как общее свойство равных отрезков, – неоперациональное, «плохое»; оно превращает в реальность свойство, которое не верифицируется в опыте; напротив, метрическое понятие длины – операциональное, «хорошее»; опыт даёт нам только числовую оценку отрезка, которая может быть вычислена решением уравнения или определена измерением.

Продолжая работать в области сверх высоких давлений, он сконструировал оборудование с системой двойного сжатия, где мощный компрессор действует внутри сосуда с высоким давлением. Это позволило Бриджмену легко получал в небольших объемах давление около 100 тыс. атмосфер. Время от времени он изучал воздействие на вещество давлений, достигающих 400 тыс. атмосфер.

Во время второй мировой войны Опенгеймер , привлек своего учителя к работе в Манхетенском проекте, где Бриджмен работал над проблемой сжимаемости урана и плутония, внеся тем самым свой вклад в создание первой атомной бомбы.

В 1946 году Бриджмен был награжден Нобелевской премией по физике «за изобретение прибора, позволяющего создавать сверхвысокие давления, и за открытия, сделанные в связи с этим в физике высоких давлений».

В 1950 г. Бриджмен избирается университетским профессором и в 1954 году – почетным профессором в отставке.

Женился Бриджмен в 1912 году на Оливии Уэр, дочери Эдмунда Уэра, основателя Атлантского университета. У них были сын и дочь. Живя с семьей то в Кембридже, то в своем летнем доме в Рандолфе (штат Нью-Гемпшир), Питер, как его называли со студенческих лет, уделял много времени работе в саду, альпинизму, фотографии, шахматам, игре в ручной мяч, а также любил читать детективы и играть на фортепьяно.

В возрасте 79 лет, через 7 лет после своей отставки, Бриджмен узнал, что болен раком и что ему осталось жить несколько месяцев. Быстро теряя способность ходить и не найдя доктора, который облегчил бы ему уход из жизни, Б. покончил с собой 20 августа 1961 г. Он оставил записку, где говорилось: «Не очень порядочно со стороны общества заставлять человека самого делать подобные вещи. Вероятно, это последний день, когда я мог сделать это сам. П.У.Б.».

Бриджмен был членом Национальной академии наук, Американского философского общества. Американской академии наук и искусств. Американской ассоциации содействия развитию науки и Американского физического общества. Он был иностранным членом Лондонского королевского общества. Национальной академии наук Мексики и Индийской академии наук. Среди его многочисленных наград были медаль Румфорда Американской академии наук и искусств (1917 г.), медаль Эллиота Крессона Франклиновского института (1932 г.), премия Комстока Национальной академии наук (1933) и научная награда Американской исследовательской корпорации (1937 г.). Он обладал почетными степенями Бруклинского политехнического института, Гарвардского университета, Принстонского университета, Йельского университета и Стивенсовского технологического института.

(биографический указатель).

Исторические лица США (биографический справочник).

Президенты США (биографический справочник).

США в ХХ веке (хронологическая таблица).

Сочинения:

Logic of modern physics, N. Y., 1927; The intelligent individual and society, N. Y., 1938;

The nature of some of our physical concepts, N. Y., 1952;

Reflections of a physicist, 2 ed., N. Y., 1955; Way things are, Camb., 1959; в рус. пер. – Анализ размерностей, М. - Л.. 1934;

Физика высоких давлений, М. - Л., 1935;

Новейшие работы в области высоких давлений. М., 1948;

Исследования больших пластических деформаций и разрывов..., М., 1955.

The Logic of Modem Physics. N.Y., 1927;

The Physics of High Pressure. N.Y., 1937;

The Nature of Thermodynamics. Cambr. Mass., 1941;

The Nature of Some our Physical Concepts. N.Y., 1952;

Reflections of a Physicis. N.Y., 1950;

A Sophisticate"s Primer of Relativity. L., 1962.

Литература:

Печенкин А. А. Операционалистская трактовка логики науки у Перси Бриджмена. - В кн.: Концепции науки в буржуазной философии и социологии. Вторая половина XIX-XX в. М., 1974.