Внецентренное растяжение определить положение нейтральной линии. Внецентренное действие продольной силы. Свойства нулевой линии

Рис. 12.3. Внецентренное растяжение бруса

Напряжения в произвольной точке сечения с координатами (x, y) на основании принципа независимости действия сил можно вычислить следующим образом (сумма алгебраическая)

Их уравнения (12.4) следует, что эпюра напряжений в рассматриваемом сечении образует плоскость. Уравнение нейтральной линии, в точках которой нормальные напряжения равны нулю, получим из (12.4), приравняв выражение нулю, т.е.

(12.5)

Из полученного уравнения следует, что нейтральная линия не проходит через центр тяжести сечения, который совпадает с началом координат. Кроме того, если координаты точки приложения силы (x 0 , y 0) положительны, то по крайней мере одна из координат x или y уравнения (12.4) должна быть отрицательной и следовательно, если точка приложения силы находится в первом квадранте, то нейтральная линия должна проходить через квадранты 2,3 и 4 (рис. 12.4).

Известно (аналитическая геометрия), что если прямая задана уравнением вида

то расстояние от начала координат до прямой будет равно

В рассматриваемом случае (12.5) получаем (рис. 12.4)

(12.5а)

Из полученного выражения следует, что при приближении точки приложения силы Р к центру тяжести сечения, т.е. при уменьшении значения координат x 0 , y 0 , расстояние ρ от центра тяжести сечения до нейтральной линии увеличивается.

σ C
x
y
А

Рис.12.4. Распределение напряжений при внецентренном растяжении

В пределе при x 0 =y 0 =0, т.е. когда сила Р приложена в центре тяжести сечения, нейтральная линия находится в бесконечности. При этом имеет место простое (центральное) растяжение или сжатие, все напряжения в сечении одного знака и равны между собой.

Если нейтральная линия пересекает сечение, то с одной стороны от нее возникает зона растяжения, а с другой – зона сжатия (рис.12.4). Проводя линии, параллельные нейтральной и касательные к контуру сечения, можно найти наиболее удаленные точки от нейтральной линии, в которых нормальные напряжения достигают своих максимальных значений. В рассмотренном случае это точки C и D.

Условия прочности в данных точках запишем в виде

где x C , y C , x D , y D – координаты опасных точек. Знаки слагаемых в формулах (12.6) выбираются исходя из анализа направлений действия изгибающих моментов и нормальной силы. Если нейтральная линия не пересекает поперечное сечение, то все нормальные напряжения будут одного знака.

Область в окрестности центра тяжести сечения, обладающая тем свойством, что при приложении силы Р в пределах этой области, напряжения во всех точках сечения будут одного знака, называется ядром сечения .

Некоторые материалы (бетон, кирпич, серый чугун) сопротивляются растяжению значительно хуже, чем сжатию. Для соответствующих конструкций важно, чтобы в материале не возникали растягивающие напряжения, а значит сжимающая силы должна быть приложена в пределах ядра сечения.

Если сила при внецентренном растяжении (сжатии) приложена на границе ядра сечения, то нейтральная линия касается контура сечения. Это условие используется для определения размеров ядра сечения. Например, для бруса круглого поперечного сечения из условия геометрической симметрии следует, что ядро сечения должно иметь форму круга (рис. 12.5). Пусть точка приложения силы Р находится на оси Oy на расстоянии от начала координат равном r (координаты точки приложения силы – x 0 =0, y 0 =r). Уравнение нейтральной линии в данном случае принимает вид (см. формулу 12.5)

Это уравнение прямой параллельной оси Ox. Так как ядро сечения представляет собой окружность радиуса r, то нейтральная линия должна касаться контура в точке А (рис. 12.5). Расстояние от начала координат да нейтральной линии равно радиусу окружности поперечного сечения бруса R. Тогда, с учетом выражения (12.5а), находим

Отсюда r=R/4, т.е. ядро бруса круглого поперечного сечения радиусом R представляет собой круг радиусом R/4.

Пример.

Для заданной схемы нагружения стержня (рис.52) построить эпюры поперечной силы Q y (z) и изгибающего момента M x (z) при следующих исходных данных: L = 5 кНм, P = 10 кН, q = 20 кН/м, l = 1 м.

Запишем уравнения поперечных сил и изгибающего момента:

Q y (z) = Q y (0) │ 1 – P - q×(z - l) │ 2

M x (z) = M x (0) + Q y (0)×z│ 1 - P×(z - l) - q×(z - l) 2 /2│ 2

В соответствии с условиями закрепления стержня запишем граничные условия в следующем виде: M x (0) = - L,

Для нахождения неизвестной реакции Q y (0) необходимо приравнять уравнение изгибающего момента к нулю при координате z = 3l:

M x (3l) = M x (0) + Q y (0)×3l - P×(3l - l) - q×(3l - l) 2 /2 = 0.

Решая это уравнение относительно Q y (0), получим Q y (0) = 21.67кН.

Теперь, учитывая найденные константы, уравнения интегральных характеристик можно переписать в следующем виде:

Q y (z) = 21.67│ 1 – P – q×(z - l) │ 2

M x (z) = -L + 21.67z│ 1 – P×(z - l) – q×(z - l) 2 /2│ 2

Построение графиков будем производить аналогично примеру 1.

1 участок 0 ≤ z ≤ l:

Q y (0) = 21.67 кН,

Q y (l) = 21.67 кН,

M x (0) = -5 кНм,

M x (l) = -5 + 21.67*1 = 16.67 кНм.

2 участок l ≤ z ≤ 3l:

Q y (l) = 21.67 – 10 = 11.67 кН,

Q y (3l) = 21.67 – 10 – 20*(3 - 1) = -28.33 кН,

M x (l) = -5 + 21.67*1 – 10(1 – 1) – 20(1 – 1) = 16.67 кНм,

M x (3l) = -5 + 21.67*3 – 10(3 – 1) – 20(3 – 1) =0 кНм.

Определим координаты экстремума и значения функции изгибающего момента в экстремальной точке:

Q y (z1) = 21.67 – P – q (z1 - l) = 0 → z1 = 1.58 м.

M x (1.58) = -L + 21.67·1.58 – P (1.58 - l) – q (1.58 - l) 2 /2 = 20.07 кНм.

По рассчитанным значениям строятся графики поперечной силы и изгибающего момента (рис. 52).

При внецентренном растяжении равнодействующая внешних сил не совпадает с осью стержня, как при обычном растяжении, а смещена относительно оси z и остается ей параллельной (рис.53).


Пусть точка А приложения равнодействующей внешних сил имеет в сечении координаты (х 0 , у 0). Тогда относительно главных осей равнодействующая сила Р дает моменты:

М х = Р×у 0 ,

М у = - Р×х 0 .

Таким образом, внецентренное растяжение-сжатие оказывается родственным косому изгибу. В отличие от последнего, однако, при внецентренном растяжении в поперечном сечении стержня возникают не только изгибающие моменты, но и нормальная сила:



В произвольной точке В с координатами (х, у) нормальное напряжение определяется следующим выражением:

Пространственная эпюра напряжений образует плоскость. Уравнение нейтральной линии получаем, приравнивая напряжения нулю:

При внецентренном растяжении-сжатии в отличие от косого изгиба нейтральная линия не проходит через центр тяжести сечения. При положительных х 0 и у 0 по крайней мере одна из величин х или у, входящих в уравнение (100), должна быть отрицательной. Следовательно, если точка приложения силы Р находится в первом квадранте, то нейтральная линия проходит с противоположенной стороны центра тяжести через квадранты 2,3 и 4 (рис.54).


Расстояние от начала координат до некоторой прямой

как известно из курса аналитической геометрии, равно

Следовательно, по мере того как точка приложения силы приближается к центру тяжести сечения, нейтральная линия удаляется от него.

В пределе при х 0 =у 0 =0, когда сила Р приложена в центре тяжести, нейтральная линия находится в бесконечности. Напряжения в этом случае распределены по сечению равномерно.

Из сказанного следует, что при внецентренном растяжении и сжатии нейтральная линия может как пересекать сечение, так и находится за его пределами. В первом случае в сечении возникают и растягивающие и сжимающие напряжения. Во втором случае напряжения во всех точках сечения будут одного знака.

В окрестностях центра тяжести существует область, называемая ядром сечения . Если след силы Р находится внутри ядра сечения, напряжения во всех точках сечения будут одного знака. Если сила приложена за пределами ядра сечения, нейтральная линия пересекает сечение, и напряжения в сечении будут как сжимающими, так и растягивающими. Когда точка приложения силы находится на границе ядра, нейтральная линия касается контура сечения. Чтобы определить ядро сечения, надо представить себе, что нейтральная линия обкатывается вокруг сечения. Точка приложения силы вычертит при этом контуры ядра.

Основные понятия и определения…………………………………………………

Физическая и математическая модель…………………………………………….

Геометрические характеристики сечения…………………………………………

Изменение геометрических характеристик при параллельном переносе координатных осей………………………………………………………………….

Изменение геометрических характеристик при повороте координатных осей…

Геометрические характеристики сложных сечений………………………………

Метод сечений. Внутренние силы…………………………………………………

Напряжение. Напряженное состояние в точке тела………………………………

Интегральные характеристики напряжений в точке……………………………..

Нормальные напряжения в плоскости поперечного сечения……………………

Закон парности касательных напряжений………………………………………...

Напряжения на наклонных площадках……………………………………………

Главные площадки и главные напряжения……………………………………….

Экстремальные свойства главных напряжений. Круговая диаграмма Мора…..

Испытания материалов на растяжение. Диаграмма растяжения………………..

Математическая модель механики твердо деформируемого тела………………

Деформированное состояние тела…………………………………………………

Касательные напряжения при кручении………………………………………….

Касательные напряжения при изгибе. Формула Журавского……………………

Теории (гипотезы) прочности………………………………………………………

Растяжение (сжатие) стержней……………………………………………………..

Кручение стержней………………………………………………………………….

Изгиб стержней………………………………………………………………………

Внецентренное растяжение и сжатие………………………………………………

ЛИТЕРАТУРА

1. Феодосьев В.И. Сопротивление материалов: Учеб. для вузов. – М.: Наука., 1998. – 512 с.

2. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов: Учеб. для вузов. – М.: Высш.шк., 1995. – 560 с.

3. Писаренко Г.С., Яковлев А.П., Матвеев В.В. Справочник по сопротивлению материалов. – Киев.: Наукова думка, 1988. – 736 с.

4. Расчет прямых стержней на прочность. Метод.указания. С.А.Девятов, З.Н.Соколовский, Е.П.Степанова.2001.76с.

Внецентренным растяжением или сжатием называется такой вид деформации, когда в поперечном сечении бруса одновременно действуют продольная (растягивающая или сжимающая) сила и. изгибающий момент; в этом сечении может действовать и поперечная сила.

Внецентренно растянутый или сжатый брус, при расчете которого можно не учитывать дополнительные изгибающие моменты, равные произведениям продольных внешних сил Р на прогибы , называется жестким, а брус, при расчете которого их следует учитывать, - гибким.

Жесткими являются внецентренно сжатые и растянутые брусья, изображенные на рис. 10.9, а, г, д, если наибольшие их прогибы малы по сравнению с расстояниями сил Р от осей брусьев, и брусья, изображенные на рис. 10.9, б, в, в тех случаях, когда произведения малы по сравнению с внешними моментами

Рассмотрим расчет жестких брусьев; метод расчета гибких брусьев изложен ниже в § 5.13.

На рис. 11.9, а изображен жесткий брус; в его верхнем поперечном сечении одновременно действуют продольная сила N и изгибающий момент М, составляющие которого относительно главных осей и у инерции сечения равны Нормальное напряжение в произвольной точке С сечения с координатами у и равно сумме напряжений от продольной силы N и изгибающих моментов , т. е.

Продольная сила N и моменты могут рассматриваться как результат воздействия на брус внецентренно приложенной силы

Именно поэтому случай одновременного действия в поперечном сечении продольной силы и изгибающего момента называют внецентренным растяжением (при растягивающей продольной силе) или сжатием (при сжимающей).

Координаты точки А приложения силы Р называются эксцентриситетами этой силы относительно главных осей инерции и у, соответственно:

Точку А приложения силы Р называют центром давления или полюсом.

Подставим в формулу (10.9) выражения [на основании формул (11.9) и рис. 1.9, б]:

Знаки плюс перед всеми членами этой формулы поставлены потому, что положительная продольная сила а также изгибающие моменты (при положительных эксцентриситетах ) вызывают в точках поперечного сечения с положительными координатами у и z растягивающие (положительные) напряжения.

В формулу (12.9) величина растягивающей силы Р подставляется со знаком плюс, а сжимающей - со знаком минус; координаты у и z в эту формулу подставляются со своими знаками. Знак нормальных напряжений, возникающих в какой-либо точке сечения от изгибающего момента вызванного эксцентрично (внецентренно) приложенной силой Р, можно установить также, представив поперечное сечение в виде пластинки, закрепленной на валу, ось которого совпадает с осью ; пластинка опирается на жесткое основание через систему пружин (рис. 12.9).

Момент от силы Р, показанной, например, на рис. 12.9, вызывает поворот пластинки вокруг оси z, в результате чего пружины, расположенные под заштрихованной частью пластинки, оказываются сжатыми; следовательно, в этой части сечения бруса от момента возникают сжимающие напряжения. Аналогично, для того чтобы установить знак напряжений от момента надо пластинку представить закрепленной на валу, ось которого совпадает с осью у.

Формула (12.9) служит для определения нормальных напряжений в любой точке поперечного сечения при внецентренном растяжении и сжатии.

Формулу (12.9) можно представить в следующем виде:

где - радиусы инерции поперечного сечения бруса относительно главных центральных осей инерции гну соответственно.

Следует иметь в виду, что в формулах (10.9)-(14.9) оси у и z являются главными центральными осями инерции поперечного сечения бруса.

Формулы (12.9)-(14.9) удобно использовать, когда известны равнодействующая внутренних усилий в поперечном сечении бруса (т. е. сила Р) и координаты точки ее приложения (полюса). Формулу же (10.9) удобно применять, когда известны внутренние усилия действующие в поперечном сечении.

Варианты эпюр нормальных напряжений, возникающих в поперечном сечении бруса при внецентренном сжатии (т. е. при отрицательной силе Р), изображены в аксонометрии на рис. 13.9.

Они ограничены с одной стороны плоскостью поперечного сечения 1-2-3-4, а с другой - плоскостью 1-2-3-4. Ординаты эпюр в центре тяжести сечения (при y = z = 0) равны

Все ординаты эпюры, показанной на рис. 13.9, а, отрицательны, так как плоскость ограничивающая их, не пересекает плоскость 1-2-3-4 в пределах поперечного сечения бруса. Ординаты же эпюры, изображенной на рис. 13.9, б, по одну сторону от прямой отрицательны, а по другую - положительны.

Прямая пп представляет собой линию пересечения плоскости 1-2-3-4 с плоскостью поперечного сечения бруса. Во всех точках, расположенных на прямой пп, напряжения а равны нулю, и, следовательно, эта прямая является нейтральной осью (нулевой линией).

Определим положение нейтральной оси (рис. 14.9). Для этого приравняем нулю правую часть выражения (14.9):

Так как , то

Выражение (15.9) является уравнением прямой (так как координаты у и входят в него в первой степени) и представляет собой уравнение нейтральной оси. Для определения положения нейтральной оси найдем ординату точки В ее пересечения с осью у (рис. 14.9); абсцисса этой точки а потому на основании выражения (15.9)

Абсцисса точки С пересечения нейтральной оси с осью равна (рис. 14.9), а ордината этой точки Подставляя значения в выражение (15.9), находим

Итак, величины отрезков, отсекаемых нейтральной осью (нулевой линией) на осях координат, определяются выражениями:

Из этих выражений следует:

1) положение нулевой линии не зависит от величины и знака силы Р;

2) нулевая линия и полюс лежат по разные стороны от начала координат;

4) если полюс расположен на одной из главных центральных осей инерции, то нулевая линия перпендикулярна этой оси; например, когда полюс расположен на оси , то т. е. нейтральная ось параллельна оси у.

При внецентренном растяжении и сжатии нормальные напряжения в каждой точке поперечного сечения бруса, как и при изгибе, прямо пропорциональны расстоянию от этой точки до нейтральной оси. Наибольшие напряжения возникают в точках поперечного сечения, наиболее удаленных от нейтральной оси.

Эпюра нормальных напряжений, значения которых отложены от линии, перпендикулярной нейтральной оси, показана на рис. 14.9.

Каждая ордината этой эпюры определяет величину нормальных напряжений, возникающих в точках поперечного сечения, расположенных на прямой DD, проходящей через эту ординату параллельно нейтральной оси. Для построения этой эпюры достаточно определить положение нейтральной оси и вычислить нормальные напряжения в одной из точек поперечного сечения (не расположенной на этой оси), например в центре тяжести сечения. С помощью такой эпюры наиболее просто определяются значения нормальных напряжений в любых точках поперечного сечения.

Расчет на прочность стержня, сжатого или растянутого внецентренно приложенными продольными внешними силами (т. е. при отсутствии поперечных сил), производится наиболее просто, так как в таком случае внутренние усилия одинаковы во всех поперечных сечениях каждого участка стержня. Это исключает необходимость определения опасного поперечного сечения, так как при стержне с постоянными поперечными размерами в пределах каждого участка все сечения одного участка являются равноопасными. При стержне же с переменными поперечными размерами опасным в пределах каждого участка является сечение наименьшего размера.

При наличии в поперечных сечениях стержня поперечных сил изгибающие моменты непрерывно изменяются по длине стержня, а потому определение опасного сечения становится более сложным. Обычно в таких случаях проводят проверку прочности, определяя нормальные напряжения в ряде сечений (которые предположительно могут оказаться опасными) и сопоставляя их с допускаемыми напряжениями.

Для определения положения опасных точек в сечении следует параллельно нейтральной оси провести линии, касающиеся контура сечения. Таким путем находят точки сечения, расположенные по обе стороны от нейтральной оси и наиболее удаленные от нее, которые и могут быть опасными.

Внецентренное растяжение (сжатие) вызывается силой, параллельной оси бруса, но не совпадающей с ней (рис. 9.4).

Проекция точки приложения силы на поперечное сечение называется полюсом или силовой точкой, а прямая, проходящая через полюс и центр сечения, - силовой линией.

Внецентренное растяжение (сжатие) может быть сведено к осевому растяжению (сжатию) и косому изгибу, если перенести силу Р в центр тяжести сечения. Так, сила Р, отмеченная на рис. 9.4 одной черточкой Г вызовет осевое растяжение бруса, а пара сил, отмеченных двумя черточками, - косой изгиб.

На основании принципа независимости действия сил напряжения в точках поперечного сечения при внецентренном растяжении (сжатии) определяются по формуле

В эту формулу осевую силу изгибающие моменты а также координаты точки сечения, в которой определяется напряжение, надо подставлять с их знаками. Для изгибающих моментов примем такое же правило знаков, как и при косом изгибе, а осевую силу будем считать положительной, когда она вызывает растяжение.

Если координаты полюса обозначить через , то момент Формула (9.5) принимает вид

Из этого уравнения видно, что концы векторов напряжений в точках сечения расположены на плоскости. Линия пересечения плоскости напряжений с плоскостью поперечного сечения является нейтральной линией, уравнение которой находим, приравнивая правую часть равенства (9.6) нулю. После сокращения на Р получим

Таким образом, нейтральная линия при внецентренном растяжении (сжатии) не проходит через центр тяжести сечения и не перпендикулярна плоскости действия изгибающего момента. Нейтральная линия отсекает на осях координат отрезки

Представим моменты инерции как произведения площади сечения на квадрат соответствующего радиуса инерции

Тогда выражения (9.8) можно записать так:

Из формул (9.8) видно, что полюс и нейтральная линия всегда расположены по разные стороны от центра тяжести сечения, причем положение нейтральной линии определяется координатами полюса.

При приближении полюса по силовой линии к центру тяжести сечения нейтральная линия будет удаляться от центра, оставаясь параллельной своему первоначальному направлению. В пределе при нейтральная линия удалится в бесконечность. В этом случае будет иметь место центральное растяжение (сжатие) бруса.

На силовой линии всегда можно найти такое положение полюса, при котором нейтральная линия будет касаться контура сечения, нигде не пересекая его. Если провести все возможные нейтральные линии так, чтобы они касались контура сечения, нигде не пересекая его, и найти соответствующие им полюсы, то окажется, что полюсы будут расположены на вполне определенной для каждого сечения замкнутой линии. Область, ограниченная этой линией, называется ядром сечения. В круглом сечении, например, ядро представляет собой круг диаметром в 4 раза меньшим диаметра сечения, а в прямоугольных и двутавровых сечениях ядро имеет форму параллелограмма (рис. 9.5).

Из самого построения ядра сечения следует, что до тех пор, пока полюс находится внутри ядра, нейтральная линия не пересечет контур сечения и напряжения во всем сечении будут одного знака. Если, же полюс расположен вне ядра, то нейтральная линия пересечет контур сечения, и тогда в сечении будут действовать напряжения разного знака. Указанное обстоятельство необходимо учитывать при расчете на виецентренное сжатие стоек из хрупких материалов. Поскольку хрупкие материалы плохо воспринимают растягивающие нагрузки, то желательно внешние силы прикладывать к стойке так, чтобы во всем сечении действовали только напряжения сжатия. Для этого точка приложения равнодействующей внешних сил, сжимающих стойку, должна находиться внутри ядра сечения.

Расчет на прочность при внецентренном растяжении и сжатии производится так же, как и при косом изгибе, - по напряжению в опасной точке поперечного сечения. Опасной является точка сечения, наиболее удаленная от его нейтральной линии. Однако в тех случаях, когда в этой точке действует напряжение сжатия, а материал стойки хрупкий, опасной может быть точка, в которой действуй наибольшее растягивающее напряжение.

Эпюра напряжений строится на оси, перпендикулярной к нейтральной линии сечения, и ограничена прямой линией (см. рис. 9,4).

Условие прочности запишется так.

Внецентренное сжатие. Построение ядра сечения. Изгиб с кручением. Расчеты на прочность при сложном напряженном состоянии.

Внецентренное сжатие - это вид деформации, при котором продольная сила в поперечном сечении стержня приложена не в центре тяжести. При внецентренном сжатии, помимо продольной силы (N), возникают два изгибающих момента (M x и M y).

Считают, что стержень обладает большой жесткостью на изгиб, чтобы пренебречь прогибом стержня при внецентренном сжатии.

Преобразуем формулу моментов при внецентренном сжатии , подставляя значения изгибающих моментов:

Обозначим координаты некоторой точки нейтральной (нулевой) линии при внецентренном сжатии xN, yN и подставим их в формулу нормальных напряжений при внецентренном сжатии. Учитывая, что напряжения в точках нейтральной линии равны нулю, после сокращения на P/F, получим уравнение нейтральной линии при внецентренном сжатии:

(35)

Нулевая линия при внецентренном сжатии и точка приложения нагрузки всегда расположены по разные стороны от центра тяжести сечения.

Рис. 43. Внецентренное сжатие

Отрезки, отсекаемые нулевой линией от осей координат, обозначенные ax и ay, легко найти из уравнения нулевой линии при внецентренном сжатии. Если сначала принять xN = 0, yN = ay, а затем принять yN = 0, xN = ax, то найдем точки пересечения нулевой линии при внецентренном сжатии с главными центральными осями:

Рис. 44. Нейтральная линия при внецентренном растяжении - сжатии

Нейтральная линия при внецентренном сжатии разделит поперечное сечение на две части. В одной части напряжения будут сжимающими, в другой - растягивающими. Расчет на прочность, как и в случае косого изгиба, проводят по нормальным напряжениям, возникающим в опасной точке поперечного сечения (наиболее удаленной от нулевой линии).

(36)

Ядро сечения - малая область вокруг центра тяжести поперечного сечения, характерная тем, что любая сжимающая продольная сила, приложенная внутри ядра, вызывает во всех точках поперечного сечения сжимающие напряжения.

Примеры ядра сечения для прямоугольного и круглого поперечных сечений стержня.


Рис. 45. Форма ядра сечения для прямоугольника и круга

Изгиб с кручением . Такому нагружению (одновременному действию крутящих и изгибающих моментов)часто подвержены валы машин и механизмов. Для расчета бруса необходимо прежде всего установить опасные сечения. Для этого строятся эпюры изгибающих и крутящих моментов.

Используя принцип независимости действия сил, определим напряжения, возникающие в брусе отдельно для кручения, и для изгиба.

При кручении в поперечных сечениях бруса возникают касательные напряжения, достигающие наибольшего значения в точках контура сечения При изгибе в поперечных сечениях бруса возникают нормальные напряжения, достигающие наибольшего значения в крайних волокнах бруса .