Уравнения равноускоренного движения примеры. Равноускоренное прямолинейное движение. Прямолинейное движение при известной зависимости координаты от времени

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Вы сейчас здесь: Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Электромагнитные волны. Понятие электромагнитной волны. Свойства электромагнитных волн. Волновые явления
  • Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля
  • Квантовая физика. Гипотеза Планка. Явление фотоэффекта. Уравнение Эйнштейна. Фотоны. Квантовые постулаты Бора.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • 1) Аналитический способ.

    Считаем шоссе прямолинейным. Запишем уравнение движения велосипедиста. Так как велосипедист двигался равномерно, то его уравнение движения:

    (начало координат помещаем в точку старта, поэтому начальная координата велосипедиста равна нулю).

    Мотоциклист двигался равноускоренно. Он также начал движение с места старта, поэтому его начальная координата равна нулю, начальная скорость мотоциклиста также равна нулю (мотоциклист начал двигаться из состояния покоя).

    Учитывая, что мотоциклист начал движение на позже, уравнение движения мотоциклиста:

    При этом скорость мотоциклиста изменялась по закону:

    В момент, когда мотоциклист догнал велосипедиста их координаты равны, т.е. или:

    Решая это уравнение относительно , находим время встречи:

    Это квадратное уравнение. Определяем дискриминант:

    Определяем корни:

    Подставим в формулы числовые значения и вычислим:

    Второй корень отбрасываем как несоответствующий физическим условиям задачи: мотоциклист не мог догнать велосипедиста через 0,37 с после начала движения велосипедиста, так как сам покинул точку старта только через 2 с после того, как стартовал велосипедист.

    Таким образом, время, когда мотоциклист догнал велосипедиста:

    Подставим это значение времени в формулу закона изменения скорости мотоциклиста и найдем значение его скорости в этот момент:

    2) Графический способ.

    На одной координатной плоскости строим графики изменения со временем координат велосипедиста и мотоциклиста (график для координаты велосипедиста — красным цветом, для мотоциклиста — зеленым). Видно, что зависимость координаты от времени для велосипедиста — линейная функция, и график этой функции — прямая (случай равномерного прямолинейного движения). Мотоциклист двигался равноускоренно, поэтому зависимость координаты мотоциклиста от времени — квадратичная функция, графиком которой является парабола.

    Выводятся формулы прямолинейного движения материальной точки для трех способов задания движения - при известной зависимости координаты от времени; при известной зависимости ускорения от времени и ускорения от координаты. Рассмотрены прямолинейное равномерное и прямолинейное равноускоренное движения.

    Содержание

    Основные формулы прямолинейного движения

    Пусть материальная точка движется по оси . Далее и обозначают координату и скорость точки в начальный момент времени .
    Если задан закон изменения ее координаты от времени :
    ,
    то дифференцируя координату по времени, получаем скорость и ускорение точки:
    ;
    .

    Пусть нам известна зависимость ускорения от времени :
    .
    Тогда зависимости скорости и координаты от времени определяются по формулам:
    (1) ;
    (2) ;
    (3) ;
    (4) .

    Пусть нам известна зависимость ускорения от координаты :
    .
    Тогда зависимость скорости от координаты имеет вид:
    (5) .
    Зависимость координаты от времени определяется в неявном виде:
    (6) .

    Для прямолинейного равномерного движения :
    ;
    ;
    .

    Для прямолинейного равноускоренного движения :
    ;
    ;
    ;
    .

    Приведенные здесь формулы можно применить не только для прямолинейного движения, но и для некоторых случаев криволинейного движения . Например для трехмерного движения в прямоугольной системе координат , если движение вдоль оси не зависит от проекций величин на другие координатные оси. Тогда формулы (1) - (6) дают зависимости для проекций величин на ось .

    Также эти формулы применимы при движении по заданной траектории при естественном способе задания движения. Только здесь в качестве координаты выступает длина дуги траектории, отсчитываемая от выбранного начала отсчета . Тогда вместо проекций и следует подставить и - проекции скорости и ускорения на выбранное направление касательной к траектории.

    Прямолинейное движение при известной зависимости координаты от времени

    Рассмотрим случай, когда материальная точка движется по прямой линии. Выберем систему координат с началом в произвольной точке . Ось направим вдоль линии движения точки. Тогда положение точки однозначно определяется значением одной координаты .

    Если задан закон изменения координаты от времени :
    ,
    то дифференцируя по времени , найдем закон изменения скорости:
    .
    При точка движется в положительном направлении оси (на рисунке слева направо). При точка движется в отрицательном направлении оси (на рисунке справа налево).

    Дифференцируя скорость по времени, находим закон изменения ускорения:
    .
    Поскольку прямая не имеет кривизны, то радиус кривизны траектории можно считать бесконечно большим, . Тогда нормальное ускорение равно нулю:
    .
    То есть ускорение точки тангенциальное (касательное):
    .
    Что вполне естественно, поскольку и скорость и ускорение точки направлены по касательной к траектории - прямой, вдоль которой происходит движение.
    Если и одного знака (то есть оба положительные или оба отрицательные), то модуль скорости увеличивается (скорость возрастает по абсолютной величине). Если и разных знаков, то модуль скорости уменьшается (скорость убывает по абсолютной величине).

    Прямолинейное движение при известном ускорении

    Ускорение, зависящее от времени

    Пусть нам известен закон изменения ускорения от времени:
    .
    Нашей задачей является найти закон изменения скорости и закон изменения координаты от времени:
    ;
    .

    Применим формулу:
    .
    Это дифференциальное уравнение первого порядка с разделяющимися переменными
    ;
    .
    Здесь - постоянная интегрирования. Отсюда видно, что только по известной зависимости ускорения от времени, нельзя однозначно определить зависимость скорости от времени. Мы получили целое множество законов изменения скорости, которые отличаются друг от друга на произвольную постоянную . Чтобы найти нужный нам закон изменения скорости, мы должны задать еще одно значение. Как правило таким значением является значение скорости в начальный момент времени . Чтобы это сделать перейдем от неопределенного интеграла к определенному:
    .
    Пусть - скорость точки в начальный момент времени . Подставим :
    ;
    ;
    .
    Таким образом закон изменения скорости от времени имеет вид:
    (1) .

    Аналогичным образом определяем закон изменения координаты от времени.
    .
    (2) .
    Здесь - значение координаты в начальный момент времени .

    Подставим (1) в (2).

    .

    Область интегрирования в двойном интеграле.

    Если изменить порядок интегрирования в двойном интеграле, то получим:

    .

    Таким образом, мы получили следующие формулы:
    (3) ;
    (4) .

    Ускорение, зависящее от координаты

    Пусть теперь нам известен закон изменения ускорения от координаты:
    .
    Нам нужно решить дифференциальное уравнение:
    .
    Это дифференциальное уравнение не содержит независимую переменную в явном виде. Общий метод решения таких уравнений рассмотрен на странице “Дифференциальные уравнения высших порядков, не содержащие независимую переменную в явном виде ”. Согласно этому методу мы считаем, что является функцией от :
    ;
    .
    Разделяем переменные и интегрируем:
    ;
    ;
    ;
    .
    Извлекая корень нужно учесть, что скорость может быть как положительной, так и отрицательной. На небольшом удалении от точки , знак определяется знаком постоянной . Однако, если ускорение направлено противоположно скорости, то скорость точки уменьшится до нуля и направление движения изменится на противоположное. Поэтому правильный знак, плюс или минус, выбирается при рассмотрении конкретного движения.
    (5) .
    В начале движения
    .

    Теперь определяем зависимость координаты от времени. Дифференциальное уравнение для координаты имеет вид:
    .
    Это дифференциальное уравнение с разделяющимися переменными . Разделяем переменные и интегрируем:
    (6) .
    Это уравнение определяет зависимость координаты от времени в неявном виде.

    Прямолинейное равномерное движение

    Применим полученные выше результаты для случая прямолинейного равномерного движения. В этом случае ускорение
    .
    ;
    . То есть скорость является постоянной, а координата линейно зависит от времени. Формулы (5) и (6) дают тот же самый результат.

    Прямолинейное равноускоренное движение

    Теперь рассмотрим прямолинейное равноускоренное движение.
    В этом случае ускорение является величиной постоянной:
    .
    По формулам (1) и (2) находим:
    ;

    .

    Если применим формулу (5), то получим зависимость скорости от координаты:
    .

    Прямолинейное движение в векторном виде

    Полученные формулы можно представить в векторном виде. Для этого достаточно умножить уравнения, определяющие , и на единичный вектор (орт) , направленный вдоль оси .

    Тогда радиус-вектор точки, векторы скорости и ускорения имеют вид:
    ;
    ;
    .

  • Что такое равноускоренное движение?

    Равноускоренным движением в физике считается такое движение, вектор ускорения которого не меняется по модулю и направлению. Говоря простым языком, равноускоренное движение представляет собой неравномерное движение (то есть идущее с разной скоростью), ускорение которого является постоянным на протяжении определенного промежутка времени. Представим себе , который начинает двигаться, первые 2 секунды его скорость равна 10 м/с, следующие 2 секунды он уже движется со скоростью 20 м/с, а еще через 2 секунды уже со скоростью 30 м/с. То есть каждые 2 секунды он ускоряется на 10 м/с, такое движение и есть равноускоренным.

    Отсюда можно вывести предельно простое определение равноускоренного движения: это такое движение любого физического тела, при котором его скорость за равные промежутки времени изменяется одинаково.

    Примеры равноускоренного движения

    Наглядным примером равноускоренного движения в повседневной жизни может быть велосипед, едущий с горки вниз (но не велосипед, управляемый велосипедистом), или брошенный камень под определенным углом к горизонту.

    К слову пример с камнем можно рассмотреть более детально. В любой точке траектории полета на камень действует ускорение свободного падения g. Ускорение g не меняется, то есть остается константой и всегда направлено в одну сторону (по сути, это главное условие равноускоренного движения).

    Полет брошенного камня удобно представить в виде сумы движений относительно вертикальной и горизонтальной оси системы координат.

    Если вдоль оси Х движение камня будет равномерным и прямолинейным, то вдоль оси Y равноускоренным и прямолинейным.

    Формула равноускоренного движения

    Формула скорости при равноускоренном движении будет иметь такой вид:

    Где V 0 – это начальная скорость тела, а – ускорение (как мы помним, эта величина является константой), t – общее время полета камня.

    При равноускоренном движении зависимость V(t) будет иметь вид прямой линии.

    Ускорение может быть определено по углу наклона графика скорости. На этом рисунке оно равно отношению сторон треугольника АВС.

    Чем больше угол β, тем больше наклон и как следствие, крутизна графика по отношению к оси времени, и тем больше будет ускорение тела.

    • Сивухин Д. В. Общий курс физики. - М.: Физматлит, 2005. - Т. I. Механика. - С. 37. - 560 с. - ISBN 5-9221-0225-7.
    • Тарг С. М. Краткий курс теоретической механики. - 11-е изд. - М.: «Высшая школа», 1995. - С. 214. - 416 с. - ISBN 5-06-003117-9.

    Равноускоренное движение, видео

  • Графическое представление равномерного прямолинейного движения

    Механическое движение представляют графическим способом. Зависимость физических величин выражают при помощи функций. Обозначают:

    V (t) - изменение скорости со временем

    a(t) - изменение ускорения со временем

    За висимость ускорения от времени . Так как при равномерном движении ускорение равно нулю, то зависимость a(t) - прямая линия, которая лежит на оси времени.




    Зависимость скорости от времени . Так как тело движется прямолинейно и равномерно (v = const ), т.е. скорость со временем не изменяется, то график с зависимостью скорости от времени v(t) - прямая линия, параллельная оси времени.


    Проекция перемещения тела численно равна площади прямоугольника АОВС под графиком, так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.



    Правило определения пути по графику v(t): при прямолинейном равномерном движении модуль вектора перемещения равен площади прямоугольника под графиком скорости.




    Зависимость перемещения от времени. График s(t) - наклонная линия:

    Из графика видно, что проекция скорости равна:

    Рассмотрев эту формулу, мы можем сказать, чем больше угол, тем быстрей движется тело и оно проходит больший путь за меньшее время.

    Правило определения скорости по графику s(t): Тангенс угла наклона графика к оси времени равен скорости движения.


    Неравномерное прямолинейное движение.

    Равномерное движение это движение с постоянной скоростью. Если скорость тела меняется, говорят, что оно движется неравномерно.

    Движение, при котором тело за равные промежутки времени совершает неодинаковые перемещения, называют неравномерным или переменным движением .

    Для характеристики неравномерного движения вводится понятие средней скорости.

    Средняя скорость движения равна отношению всего пути, пройденного материальной точкой к промежутку времени, за который этот путь пройден.

    В физике наибольший интерес представляет не средняя, а мгновенная скорость , которая определяется как предел, к которому стремится средняя скорость за бесконечно малый промежуток времени Δt :


    Мгновенной скоростью переменного движения называют скорость тела в данный момент времени или в данной точке траектории .

    Мгновенная скорость тела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке.

    Различие между средней и мгновенной скоростями показано на рисунке.


    Движение тела, при котором его скорость за любые равные промежутки времени изменяется одинаково, называют равноускоренным или равнопеременным движением .

    Ускорение - это векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

    Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле:

    Обозначения:

    V x - Скорость тела при равноускоренном движении по прямой

    V x o - Начальная скорость тела

    a x - Ускорение тела

    t - Время движения тела

    Ускорение показывает, как быстро изменяетcя скорость тела. Если ускорение положительно, значит скорость тела увеличивается, движение ускоренное. Если ускорение отрицательно, значит скорость уменьшается, движение замедленное.

    Единица измерения ускорения в СИ [м/с 2 ].

    Ускорение измеряют акселерометром

    Уравнение скорости для равноускоренного движения:v x = v xo + a x t

    Уравнение равноускоренного прямолинейного движения (перемещение при равноускоренном движении):

    Обозначения:

    S x - Перемещение тела при равноускоренном движении по прямой

    V x o - Начальная скорость тела

    V x - Скорость тела при равноускоренном движении по прямой

    a x - Ускорение тела

    t - Время движения тела

    Еще формулы, для нахождения перемещения при равноускоренном прямолинейном движении, которые можно использовать при решении задач:


    Если известны начальная, конечная скорости движения и ускорение.


    Если известны начальная, конечная скорости движения и время всего движения


    Графическое представление неравномерного прямолинейного движения

    Механическое движение представляют графическим способом. Зависимость физических величин выражают при помощи функций. Обозначают:

    V(t) - изменение скорости со временем

    S(t) - изменение перемещения (пути) со временем