Решение степеней с одинаковыми основаниями. Формулы степеней и корней. Свойства степеней с рациональными показателями

Основные свойства степеней

"Свойства степеней" - довольно популярный запрос в поисковых системах, что показывает большой интерес к свойствам степени. Мы собрали для вас все свойства степени (свойства степени с натуральным показателем, свойства степени с рациональным показателем, свойства степени с целым показателем) в одном месте. Вы можете скачать краткую версию шпаргалки "Свойства степеней" в формате.pdf, чтобы при необходимости легко их вспомнить, или ознакомиться со свойствами степеней прямо на сайте. Более подробно свойства степеней с примерами рассмотрены ниже.

Скачать шпаргалку "Свойства степеней" (формат. pdf )

Свойства степеней (кратко)

    a 0=1, если a ≠0

    a 1=a

    (−a )n =an , если n - четное

    (−a )n =−an , если n - нечетное

    (a b )n =an bn

    (ab )n =anbn

    a n =1an

    (ab )−n =(ba )n

    an am =an +m

    anam =an m

    (an )m =an m

Свойства степеней (с примерами)

1-е свойство степени Любое число отличное от нуля в нулевой степени равно единице. a 0=1, если a ≠0 Например: 1120=1, (−4)0=1, (0,15)0=1

2-е свойство степени Любое число в первой степени равно самому числу. a 1=a Например: 231=23, (−9,3)1=−9,3

3-е свойство степени Любое число в четной степени положительно. an =an , если n - четное (делящееся на 2) целое число (−a )n =an , если n - четное (делящееся на 2) целое число Например: 24=16, (−3)2=32=9, (−1)10=110=1

4-е свойство степени Любое число в нечетной степени сохраняет свой знак. an =an , если n - нечетное (не делящееся на 2) целое число (−a )n =−an , если n - нечетное (не делящееся на 2) целое число Например: 53=125, (−3)3=33=27, (−1)11=−111=−1

5-е свойство степени Произведение чисел, возведенное в степень, можно представить как произведение чисел возведенных в эту степень (и наоборот). (a b )n =an bn , при этом a , b , n Например: (2,1⋅0,3)4,5=2,14,5⋅0,34,5

6-е свойство степени Частное (деление) чисел, возведенное в степень, можно представить как частное чисел возведенных в эту степень (и наоборот). (ab )n =anbn , при этом a , b , n - любые допустимые (не обязательно целые) числа Например: (1,75)0,1=(1,7)0,150,1

7-е свойство степени Любое число в отрицательной степени равно обратному числу в этой степени. (Обратное число это число на которое нужно умножить данное число, чтобы получить единицу.) a n =1an , при этом a и n - любые допустимые (не обязательно целые) числа Например: 7−2=172=149

8-е свойство степени Любая дробь в отрицательной степени равна обратной дроби в этой степени. (ab )−n =(ba )n , при этом a , b , n - любые допустимые (не обязательно целые) числа Например: (23)−2=(32)2, (14)−3=(41)3=43=64

9-е свойство степени При умножении степеней с одинаковым основанием показатели степени складываются, а основание остается прежним. an am =an +m , при этом a , n , m - любые допустимые (не обязательно целые) числа Например: 23⋅25=23+5=28, обратите внимание, что это свойство степени сохраняется и для отрицательных значений степеней 3−2⋅36=3−2+6=34, 47⋅4−3=47+(−3)=47−3=44

10-е свойство степени При делении степеней с одинаковым основанием показатели степени вычитаются, а основание остается прежним. anam =an m , при этом a , n , m - любые допустимые (не обязательно целые) числа Например: (1,4)2(1,4)3=1,42+3=1,45, обратите внимание, как применяется это свойство степени к отрицательным значения степеней3−236=3−2−6=3−8, 474−3=47−(−3)=47+3=410

11-е свойство степени При возведении степени в степень степени перемножаются. (an )m =an m Например: (23)2=23⋅2=26=64

Таблица степеней до 10

Мало кому удается запомнить всю таблицу степеней, да и кому это нужно когда ее так легко найти? Наша таблица степеней включает в себя как популярные таблицы квадратов и кубов (от 1 до 10), так и таблицы других степеней, которые встречаются реже. В столбцах таблицы степеней указываются основания степени (число, которое нужно возвести в степень), в строках – показатели степени (степень, в которую нужно возвести число), на пересечении нужного столбца и нужной строки находится результат возведения нужного числа в заданную степень. Существуют несколько типов задач, решаемых с помощью таблицы степеней. Прямая задача – это вычислить n -ю степень числа. Обратная задача, которая так же может быть решена с помощью таблицы степеней, может звучать так: "в какую степень нужно возвести число a , чтобы получить число b ?" или "Какое число в степени n дает число b ?".

Таблица степеней до 10

1 n

2 n

3 n

4 n

5 n

6 n

7 n

8 n

9 n

10 n

Как пользоваться таблицей степеней

Рассмотрим несколько примеров использования таблицы степеней.

Пример 1. Какое число получится в результате возведения числа 6 в 8 степень? В таблице степеней ищем столбец 6n , так как по условию задачи число 6 возводится в степень. Затем в таблице степеней ищем строку 8, так как заданное число необходимо возвести в степень 8. На пересечении смотрим ответ: 1679616.

Пример 2. В какую степень нужно возвести число 9, чтобы получить 729? В таблице степеней ищем колонку 9n и спускаемся по ней вниз до числа 729 (третья строчка нашей таблицы степеней). Номер строчки и есть искомая степень, то есть ответ: 3.

Пример 3. Какое число нужно возвести в степень 7, чтобы получить 2187? В таблице степеней ищем строку 7, затем двигаемся по ней вправо до числа 2187. От найденного числа поднимаемся вверх и узнаем, что заголовок этого столбца 3n , что означает, что ответ: 3.

Пример 4. В какую степень нужно возвести число 2, чтобы получить 63? В таблице степеней находим столбец 2n и спускаемся по нему до тех пор, пока не встретим 63... Но этого не произойдет. Число 63 мы никогда не встретим ни в этом столбце, ни в любом другом столбце таблицы степеней, а это означает, что никакое целое число от 1 до 10 не дает число 63 при возведении в целую степень от 1 до 10. Таким образом, ответа нет.

Если вам нужно возвести какое-то конкретное число в степень, можете воспользоваться . А сейчас мы более подробно остановимся на свойствах степеней .

Экспоненциальные числа открывают большие возможности, они позволяют нам преобразовать умножение в сложение, а складывать гораздо легче, чем умножать.

Например, нам надо умножить 16 на 64. Произведение от умножения этих двух чисел равно 1024. Но 16 – это 4×4, а 64 – это 4х4х4. То есть 16 на 64=4x4x4x4x4, что также равно 1024.

Число 16 можно представить также в виде 2х2х2х2, а 64 как 2х2х2х2х2х2, и если произвести умножение, мы опять получим 1024.

А теперь используем правило . 16=4 2 , или 2 4 , 64=4 3 , или 2 6 , в то же время 1024=6 4 =4 5 , или 2 10 .

Следовательно, нашу задачу можно записать по-другому: 4 2 х4 3 =4 5 или 2 4 х2 6 =2 10 , и каждый раз мы получаем 1024.

Мы можем решить ряд аналогичных примеров и увидим, что умножение чисел со степенями сводится к сложению показателей степени , или экспонент, разумеется, при том условии, что основания сомножителей равны.

Таким образом, мы можем, не производя умножения, сразу сказать, что 2 4 х2 2 х2 14 =2 20 .

Это правило справедливо также и при делении чисел со степенями, но в этом случае экспонента делителя вычитается из экспоненты делимого . Таким образом, 2 5:2 3 =2 2 , что в обычных числах равно 32:8=4, то есть 2 2 . Подведем итоги:

a m х a n =a m+n , a m: a n =a m-n , где m и n — целые числа.

С первого взгляда может показаться, что такое умножение и деление чисел со степенями не очень удобно, ведь сначала надо представить число в экспоненциальной форме. Нетрудно представить в такой форме числа 8 и 16, то есть 2 3 и 2 4 , но как это сделать с числами 7 и 17? Или как поступать в тех случаях, когда число можно представить в экспоненциальной форме, но основания экспоненциальных выражений чисел сильно различаются. Например, 8×9 – это 2 3 х3 2 , и в этом случае мы не можем суммировать экспоненты. Ни 2 5 и ни 3 5 не являются ответом, ответ также не лежит в интервале между этими двумя числами.

Тогда стоит ли вообще возиться с этим методом? Безусловно стоит. Он дает огром­ные преимущества, особенно при сложных и трудоемких вычислениях.

Сложение и вычитание степеней

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .

Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a 2 и 3a 2 равна 5a 2 .

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.

Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Или:
2a 4 — (-6a 4) = 8a 4
3h 2 b 6 — 4h 2 b 6 = -h 2 b 6
5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, a n .a m = a m+n .

Для a n , a берётся как множитель столько раз, сколько равна степень n;

И a m , берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1

Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x — y).
Ответ: x 4 — y 4 .
Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых — отрицательные .

1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

Если a + b умножаются на a — b, результат будет равен a 2 — b 2: то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат , результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a — y).(a + y) = a 2 — y 2 .
(a 2 — y 2)⋅(a 2 + y 2) = a 4 — y 4 .
(a 4 — y 4)⋅(a 4 + y 4) = a 8 — y 8 .

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

Запись a 5 , делённого на a 3 , выглядит как $\frac $. Но это равно a 2 . В ряде чисел
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются. .

Так, y 3:y 2 = y 3-2 = y 1 . То есть, $\frac = y$.

И a n+1:a = a n+1-1 = a n . То есть $\frac = a^n$.

Или:
y 2m: y m = y m
8a n+m: 4a m = 2a n
12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a -5 на a -3 , равен a -2 .
Также, $\frac: \frac = \frac .\frac = \frac = \frac $.

h 2:h -1 = h 2+1 = h 3 или $h^2:\frac = h^2.\frac = h^3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $\frac $ Ответ: $\frac $.

2. Уменьшите показатели степеней в $\frac $. Ответ: $\frac $ или 2x.

3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .

4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

5. Умножьте (a 3 + b)/b 4 на (a — b)/3.

6. Умножьте (a 5 + 1)/x 2 на (b 2 — 1)/(x + a).

7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

Свойства степени

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

a m · a n = a m + n , где « a » - любое число, а « m », « n » - любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15
  • Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

    Нельзя заменять сумму (3 3 + 3 2) на 3 5 . Это понятно, если
    посчитать (3 3 + 3 2) = (27 + 9) = 36 , а 3 5 = 243

    Свойство № 2
    Частное степеней

    При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

  • Записать частное в виде степени
    (2b) 5: (2b) 3 = (2b) 5 − 3 = (2b) 2
  • Вычислить.

11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
Пример. Решить уравнение. Используем свойство частного степеней.
3 8: t = 3 4

Ответ: t = 3 4 = 81

Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

Пример. Упростить выражение.
4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5

Пример. Найти значение выражения, используя свойства степени.

2 11 − 5 = 2 6 = 64

Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4

Свойство № 3
Возведение степени в степень

При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

(a n) m = a n · m , где « a » - любое число, а « m », « n » - любые натуральные числа.

Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

Как умножать степени

Как умножать степени? Какие степени можно перемножить, а какие - нет? Как число умножить на степень?

В алгебре найти произведение степеней можно в двух случаях:

1) если степени имеют одинаковые основания;

2) если степени имеют одинаковые показатели.

При умножении степеней с одинаковыми основаниями надо основание оставить прежним, а показатели - сложить:

При умножении степеней с одинаковыми показателями общий показатель можно вынести за скобки:

Рассмотрим, как умножать степени, на конкретных примерах.

Единицу в показателе степени не пишут, но при умножении степеней - учитывают:

При умножении количество степеней может быть любое. Следует помнить, что перед буквой знак умножения можно не писать:

В выражениях возведение в степень выполняется в первую очередь.

Если нужно число умножить на степень, сначала следует выполнить возведение в степень, а уже потом - умножение:

Умножение степеней с одинаковыми основаниями

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы изучим умножение степеней с одинаковыми основаниями. Вначале вспомним определение степени и сформулируем теорему о справедливости равенства . Затем приведем примеры ее применения на конкретных числах и докажем ее. Также мы применим теорему для решения различных задач.

Тема: Степень с натуральным показателем и ее свойства

Урок: Умножение степеней с одинаковыми основаниями (формула )

1. Основные определения

Основные определения:

n — показатель степени,

n -ая степень числа.

2. Формулировка теоремы 1

Теорема 1. Для любого числа а и любых натуральных n и k справедливо равенство:

По-иному: если а – любое число; n и k натуральные числа, то:

Отсюда правило 1:

3. Разъясняющие задачи

Вывод: частные случаи подтвердили правильность теоремы №1. Докажем ее в общем случае, то есть для любого а и любых натуральных n и k.

4. Доказательство теоремы 1

Дано число а – любое; числа n и k – натуральные. Доказать:

Доказательство основано на определении степени.

5. Решение примеров с помощью теоремы 1

Пример 1: Представьте в виде степени.

Для решения следующих примеров воспользуемся теоремой 1.

ж)

6. Обобщение теоремы 1

Здесь использовано обобщение:

7. Решение примеров с помощью обобщения теоремы 1

8. Решение различных задач с помощью теоремы 1

Пример 2: Вычислите (можно использовать таблицу основных степеней).

а) (по таблице)

б)

Пример 3: Запишите в виде степени с основанием 2.

а)

Пример 4: Определите знак числа:

, а – отрицательное, так как показатель степени при -13 нечетный.

Пример 5: Замените (·) степенью числа с основанием r:

Имеем , то есть .

9. Подведение итогов

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

1. Школьный помощник (Источник).

1. Представьте в виде степени:

а) б) в) г) д)

3. Запишите в виде степени с основанием 2:

4. Определите знак числа:

а)

5. Замените (·) степенью числа с основанием r:

а) r 4 · (·) = r 15 ; б) (·) · r 5 = r 6

Умножение и деление степеней с одинаковыми показателями

На этом уроке мы изучим умножение степеней с одинаковыми показателями. Сначала вспомним основные определения и теоремы об умножении и делении степеней с одинаковыми основаниями и возведении степень в степень. Затем сформулируем и докажем теоремы об умножении и делении степеней с одинаковыми показателями. А затем с их помощью решим ряд типичных задач.

Напоминание основных определений и теорем

Здесь a — основание степени,

n -ая степень числа.

Теорема 1. Для любого числа а и любых натуральных n иk справедливо равенство:

При умножении степеней с одинаковыми основаниями показатели складываются, основание остается неизменным.

Теорема 2. Для любого числа а и любых натуральных n и k, таких, что n > k справедливо равенство:

При делении степеней с одинаковыми основаниями показатели отнимаются, а основание остается неизменным.

Теорема 3. Для любого числа а и любых натуральных n иk справедливо равенство:

Все перечисленные теоремы были о степенях с одинаковыми основаниями , на этом уроке будут рассмотрены степени с одинаковыми показателями .

Примеры на умножение степеней с одинаковыми показателями

Рассмотрим следующие примеры:

Распишем выражения по определению степени.

Вывод: из примеров можно заметить, что , но это еще нужно доказать. Сформулируем теорему и докажем ее в общем случае, то есть для любых а и b и любого натурального n.

Формулировка и доказательство теоремы 4

Для любых чисел а и b и любого натурального n справедливо равенство:

Доказательство теоремы 4.

По определению степени:

Итак, мы доказали, что .

Чтобы перемножить степени с одинаковыми показателями, достаточно перемножить основания, а показатель степени оставить неизменным.

Формулировка и доказательство теоремы 5

Сформулируем теорему для деления степеней с одинаковыми показателями.

Для любого числа а и b () и любого натурального n справедливо равенство:

Доказательство теоремы 5.

Распишем и по определению степени:

Формулировка теорем словами

Итак, мы доказали, что .

Чтобы разделить друг на друга степени с одинаковыми показателями, достаточно разделить одно основание на другое, а показатель степени оставить неизменным.

Решение типичных задач с помощью теоремы 4

Пример 1: Представить в виде произведения степеней.

Для решения следующих примеров воспользуемся теоремой 4.

Для решения следующего примера вспомним формулы:

Обобщение теоремы 4

Обобщение теоремы 4:

Решение примеров с помощью обобщенной теоремы 4

Продолжение решения типичных задач

Пример 2: Запишите в виде степени произведения.

Пример 3: Запишите в виде степени с показателем 2.

Примеры на вычисление

Пример 4: Вычислить самым рациональным способом.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

2. Школьный помощник (Источник).

1. Представить в виде произведения степеней:

а) ; б) ; в) ; г) ;

2. Запишите в виде степени произведения:

3. Запишите в виде степени с показателем 2:

4. Вычислить самым рациональным способом.

Урок математики по теме «Умножение и деление степеней»

Разделы: Математика

Педагогическая цель :

  • ученик научится различать свойства умножения и деления степеней с натуральным показателем; применять эти свойства в случае с одинаковыми основаниями;
  • ученик получит возможность уметь выполнять преобразования степеней с разными основаниями и уметь выполнять преобразования в комбинированных заданиях.
  • Задачи :

  • организовать работу учащихся посредством повторения ранее изученного материала;
  • обеспечить уровень воспроизведения посредством выполнения упражнений различного типа;
  • организовать проверку по самооценке учащихся посредством тестирования.
  • Деятельностные единицы учения: определение степени с натуральным показателем; компоненты степени; определение частного; сочетательный закон умножения.

    I. Организация демонстрации овладение учащимися имеющимися знаниями. (шаг 1)

    а) Актуализация знаний:

    2) Сформулировать определение степени с натуральным показателем.

    a n =a a a a … а (n раз)

    b k =b b b b a… b (k раз) Обосновать ответ.

    II. Организация самооценивания обучаемого степенью владения актуальным опытом. (шаг 2)

    Тест для самопроверки: (индивидуальная работа в двух вариантах.)

    А1) Представьте произведение 7 7 7 7 x x x в виде степени:

    А2) Представить в виде произведения степень (-3) 3 х 2

    A3) Вычислите: -2 3 2 + 4 5 3

    Количество заданий в тесте я подбираю в соответствии с подготовкой уровня класса.

    К тесту даю ключ для самопроверки. Критерии: зачёт – не зачёт.

    III. Учебно-практическая задача (шаг 3) + шаг 4. (сформулируют свойства сами ученики)

  • вычислите: 2 2 2 3 = ? 3 3 3 2 3 =?
  • Упростите: а 2 а 20 = ? b 30 b 10 b 15 = ?
  • В ходе решения задачи 1) и 2) учащиеся предлагают решение, а я, как учитель, организую класс на нахождение способа для упрощения степеней при умножении с одинаковыми основаниями.

    Учитель: придумать способ для упрощения степеней при умножении с одинаковыми основаниями.

    На кластере появляется запись:

    Формулируется тема урока. Умножение степеней.

    Учитель: придумайте правило деления степеней с одинаковыми основаниями.

    Рассуждения: каким действием проверяется деление? а 5: а 3 = ? что а 2 а 3 = а 5

    Возвращаюсь к схеме – кластер и дополняем запись – ..при делении вычитаем и дописываем тему урока. …и деление степеней.

    IV. Сообщение учащимся пределов познания (как минимум и как максимум).

    Учитель: задачей минимума на сегодняшний урок является научиться применять свойства умножения и деления степеней с одинаковыми основаниями, а максимума: применять умножение и деление совместно.

    На доске записываем: а m а n = а m+n ; а m: а n = а m-n

    V. Организация изучения нового материала. (шаг 5)

    а) По учебнику: №403 (а, в, д) задания с разными формулировками

    №404 (а, д, е) самостоятельная работа, затем организую взаимопроверку, даю ключи.

    б) При каком значении m справедливо равенство? а 16 а m = а 32 ; х h х 14 = х 28 ; х 8 (*) = х 14

    Задание: придумать аналогичные примеры для деления.

    в) № 417(а), №418 (а) Ловушки для учеников : х 3 х n = х 3n ; 3 4 3 2 = 9 6 ; а 16: а 8 = а 2 .

    VI. Обобщение изученного, проведение диагностической работы (что побуждает учеников, а не учителя изучать данную тему)(шаг 6)

    Диагностическая работа.

    Тест (ключи поместить на обратной стороне теста).

    Варианты заданий: представьте в виде степени частное х 15: х 3 ; представьте в виде степени произведение (-4) 2 (-4) 5 (-4) 7 ; при каком m справедливо равенство а 16 а m = а 32 ; найдите значение выражения h 0: h 2 при h =0,2; вычислите значение выражения (5 2 5 0) : 5 2 .

    Итог урока. Рефлексия. Делю класс на две группы.

    Найдите аргументы I группа: в пользу знания свойств степени, а II группа – аргументы, которые будут говорить о том, что можно обойтись без свойств. Все ответы выслушиваем, делаем выводы. На последующих уроках можно предложить статистические данные и назвать рубрику «В голове не укладывается!»

  • Средний человек съедает 32 10 2 кг огурцов в течение жизни.
  • Оса способна совершить беспосадочный перелёт на 3,2 10 2 км.
  • Когда стекло трескается, трещина распространяется со скоростью около 5 10 3 км/ч.
  • Лягушка съедает за свою жизнь более 3 тонн комаров. Используя степень, запишите в кг.
  • Наиболее плодовитой считается океанская рыба – луна (Моlа mola), которая откладывает за один нерест до 300000000 икринок диаметром около 1,3 мм. Запишите это число, используя степень.
  • VII. Домашнее задание.

    Историческая справка. Какие числа называют числами Ферма.

    П.19. №403, №408, №417

    Используемая литература:

  • Учебник «Алгебра-7», авторы Ю.Н. Макарычев, Н.Г. Миндюк и др.
  • Дидактический материал для 7 класса, Л.В. Кузнецова, Л.И. Звавич, С.Б. Суворова.
  • Энциклопедия по математике.
  • Журнал «Квант».
  • Свойства степеней, формулировки, доказательства, примеры.

    После того как определена степень числа, логично поговорить про свойства степени . В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров.

    Навигация по странице.

    Свойства степеней с натуральными показателями

    По определению степени с натуральным показателем степень a n представляет собой произведение n множителей, каждый из которых равен a . Отталкиваясь от этого определения, а также используя свойства умножения действительных чисел , можно получить и обосновать следующие свойства степени с натуральным показателем :

  • основное свойство степени a m ·a n =a m+n , его обобщение a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k ;
  • свойство частного степеней с одинаковыми основаниями a m:a n =a m−n ;
  • свойство степени произведения (a·b) n =a n ·b n , его расширение (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n ;
  • свойство частного в натуральной степени (a:b) n =a n:b n ;
  • возведение степени в степень (a m) n =a m·n , его обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k ;
  • сравнение степени с нулем:
    • если a>0 , то a n >0 для любого натурального n ;
    • если a=0 , то a n =0 ;
    • если a 2·m >0 , если a 2·m−1 n ;
    • если m и n такие натуральные числа, что m>n , то при 0m n , а при a>0 справедливо неравенство a m >a n .
    • Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами. Например, основное свойство дроби a m ·a n =a m+n при упрощении выражений часто применяется в виде a m+n =a m ·a n .

      Теперь рассмотрим каждое из них подробно.

      Начнем со свойства произведения двух степеней с одинаковыми основаниями, которое называют основным свойством степени : для любого действительного числа a и любых натуральных чисел m и n справедливо равенство a m ·a n =a m+n .

      Докажем основное свойство степени. По определению степени с натуральным показателем произведение степеней с одинаковыми основаниями вида a m ·a n можно записать как произведение . В силу свойств умножения полученное выражение можно записать как , а это произведение есть степень числа a с натуральным показателем m+n , то есть, a m+n . На этом доказательство завершено.

      Приведем пример, подтверждающий основное свойство степени. Возьмем степени с одинаковыми основаниями 2 и натуральными степенями 2 и 3 , по основному свойству степени можно записать равенство 2 2 ·2 3 =2 2+3 =2 5 . Проверим его справедливость, для чего вычислим значения выражений 2 2 ·2 3 и 2 5 . Выполняя возведение в степень, имеем 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 и 2 5 =2·2·2·2·2=32 , так как получаются равные значения, то равенство 2 2 ·2 3 =2 5 — верное, и оно подтверждает основное свойство степени.

      Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями. Так для любого количества k натуральных чисел n 1 , n 2 , …, n k справедливо равенство a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k .

      Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

      Можно переходить к следующему свойству степеней с натуральным показателем – свойству частного степеней с одинаковыми основаниями : для любого отличного от нуля действительного числа a и произвольных натуральных чисел m и n , удовлетворяющих условию m>n , справедливо равенство a m:a n =a m−n .

      Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0 n =0 , а при знакомстве с делением мы условились, что на нуль делить нельзя. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Действительно, при m>n показатель степени a m−n является натуральным числом, в противном случае он будет либо нулем (что происходит при m−n), либо отрицательным числом (что происходит при m m−n ·a n =a (m−n)+n =a m . Из полученного равенства a m−n ·a n =a m и из связи умножения с делением следует, что a m−n является частным степеней a m и a n . Этим доказано свойство частного степеней с одинаковыми основаниями.

      Приведем пример. Возьмем две степени с одинаковыми основаниями π и натуральными показателями 5 и 2 , рассмотренному свойству степени отвечает равенство π 5:π 2 =π 5−3 =π 3 .

      Теперь рассмотрим свойство степени произведения : натуральная степень n произведения двух любых действительных чисел a и b равна произведению степеней a n и b n , то есть, (a·b) n =a n ·b n .

      Действительно, по определению степени с натуральным показателем имеем . Последнее произведение на основании свойств умножения можно переписать как , что равно a n ·b n .

      Приведем пример: .

      Данное свойство распространяется на степень произведения трех и большего количества множителей. То есть, свойство натуральной степени n произведения k множителей записывается как (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n .

      Для наглядности покажем это свойство на примере. Для произведения трех множителей в степени 7 имеем .

      Следующее свойство представляет собой свойство частного в натуральной степени : частное действительных чисел a и b , b≠0 в натуральной степени n равно частному степеней a n и b n , то есть, (a:b) n =a n:b n .

      Доказательство можно провести, используя предыдущее свойство. Так (a:b) n ·b n =((a:b)·b) n =a n , а из равенства (a:b) n ·b n =a n следует, что (a:b) n является частным от деления a n на b n .

      Запишем это свойство на примере конкретных чисел: .

      Теперь озвучим свойство возведения степени в степень : для любого действительного числа a и любых натуральных чисел m и n степень a m в степени n равна степени числа a с показателем m·n , то есть, (a m) n =a m·n .

      Например, (5 2) 3 =5 2·3 =5 6 .

      Доказательством свойства степени в степени является следующая цепочка равенств: .

      Рассмотренное свойство можно распространить на степень в степени в степени и т.д. Например, для любых натуральных чисел p , q , r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

      Осталось остановиться на свойствах сравнения степеней с натуральным показателем.

      Начнем с доказательства свойства сравнения нуля и степени с натуральным показателем.

      Для начала обоснуем, что a n >0 при любом a>0 .

      Произведение двух положительных чисел является положительным числом, что следует из определения умножения. Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. А степень числа a с натуральным показателем n по определению является произведением n множителей, каждый из которых равен a . Эти рассуждения позволяют утверждать, что для любого положительного основания a степень a n есть положительное число. В силу доказанного свойства 3 5 >0 , (0,00201) 2 >0 и .

      Достаточно очевидно, что для любого натурального n при a=0 степень a n есть нуль. Действительно, 0 n =0·0·…·0=0 . К примеру, 0 3 =0 и 0 762 =0 .

      Переходим к отрицательным основаниям степени.

      Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m , где m — натуральное. Тогда . По правилу умножения отрицательных чисел каждое из произведений вида a·a равно произведению модулей чисел a и a , значит, является положительным числом. Следовательно, положительным будет и произведение и степень a 2·m . Приведем примеры: (−6) 4 >0 , (−2,2) 12 >0 и .

      Наконец, когда основание степени a является отрицательным числом, а показатель степени есть нечетное число 2·m−1 , то . Все произведения a·a являются положительными числами, произведение этих положительных чисел также положительно, а его умножение на оставшееся отрицательное число a дает в итоге отрицательное число. В силу этого свойства (−5) 3 17 n n представляет собой произведение левых и правых частей n верных неравенств aсвойств неравенств справедливо и доказываемое неравенство вида a n n . Например, в силу этого свойства справедливы неравенства 3 7 7 и .

      Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями. Сформулируем его. Из двух степеней с натуральными показателями и одинаковыми положительными основаниями, меньшими единицы, больше та степень, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше. Переходим к доказательству этого свойства.

      Докажем, что при m>n и 0m n . Для этого запишем разность a m −a n и сравним ее с нулем. Записанная разность после вынесения a n за скобки примет вид a n ·(a m−n −1) . Полученное произведение отрицательно как произведение положительного числа a n и отрицательного числа a m−n −1 (a n положительна как натуральная степень положительного числа, а разность a m−n −1 отрицательна, так как m−n>0 в силу исходного условия m>n , откуда следует, что при 0m−n меньше единицы). Следовательно, a m −a n m n , что и требовалось доказать. Для примера приведем верное неравенство .

      Осталось доказать вторую часть свойства. Докажем, что при m>n и a>1 справедливо a m >a n . Разность a m −a n после вынесения a n за скобки принимает вид a n ·(a m−n −1) . Это произведение положительно, так как при a>1 степень a n есть положительное число, и разность a m−n −1 есть положительное число, так как m−n>0 в силу начального условия, и при a>1 степень a m−n больше единицы. Следовательно, a m −a n >0 и a m >a n , что и требовалось доказать. Иллюстрацией этого свойства служит неравенство 3 7 >3 2 .

      Свойства степеней с целыми показателями

      Так как целые положительные числа есть натуральные числа, то все свойства степеней с целыми положительными показателями в точности совпадают со свойствами степеней с натуральными показателями, перечисленными и доказанными в предыдущем пункте.

      Степень с целым отрицательным показателем, а также степень с нулевым показателем мы определяли так, чтобы оставались справедливыми все свойства степеней с натуральными показателями, выражаемые равенствами. Поэтому, все эти свойства справедливы и для нулевых показателей степени, и для отрицательных показателей, при этом, конечно, основания степеней отличны от нуля.

      Итак, для любых действительных и отличных от нуля чисел a и b , а также любых целых чисел m и n справедливы следующие свойства степеней с целыми показателями :

    • a m ·a n =a m+n ;
    • a m:a n =a m−n ;
    • (a·b) n =a n ·b n ;
    • (a:b) n =a n:b n ;
    • (a m) n =a m·n ;
    • если n – целое положительное число, a и b – положительные числа, причем an n и a −n >b −n ;
    • если m и n – целые числа, причем m>n , то при 0m n , а при a>1 выполняется неравенство a m >a n .
    • При a=0 степени a m и a n имеют смысл лишь когда и m , и n положительные целые числа, то есть, натуральные числа. Таким образом, только что записанные свойства также справедливы для случаев, когда a=0 , а числа m и n – целые положительные.

      Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами. Для примера докажем, что свойство степени в степени выполняется как для целых положительных чисел, так и для целых неположительных чисел. Для этого нужно показать, что если p есть нуль или натуральное число и q есть нуль или натуральное число, то справедливы равенства (a p) q =a p·q , (a −p) q =a (−p)·q , (a p) −q =a p·(−q) и (a −p) −q =a (−p)·(−q) . Сделаем это.

      Для положительных p и q равенство (a p) q =a p·q доказано в предыдущем пункте. Если p=0 , то имеем (a 0) q =1 q =1 и a 0·q =a 0 =1 , откуда (a 0) q =a 0·q . Аналогично, если q=0 , то (a p) 0 =1 и a p·0 =a 0 =1 , откуда (a p) 0 =a p·0 . Если же и p=0 и q=0 , то (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1 , откуда (a 0) 0 =a 0·0 .

      Теперь докажем, что (a −p) q =a (−p)·q . По определению степени с целым отрицательным показателем , тогда . По свойству частного в степени имеем . Так как 1 p =1·1·…·1=1 и , то . Последнее выражение по определению является степенью вида a −(p·q) , которую в силу правил умножения можно записать как a (−p)·q .

      Аналогично .

      И .

      По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств.

      В предпоследнем из записанных свойств стоит остановиться на доказательстве неравенства a −n >b −n , которое справедливо для любого целого отрицательного −n и любых положительных a и b , для которых выполняется условие a. Запишем и преобразуем разность левой и правой частей этого неравенства: . Так как по условию an n , следовательно, b n −a n >0 . Произведение a n ·b n тоже положительно как произведение положительных чисел a n и b n . Тогда полученная дробь положительна как частное положительных чисел b n −a n и a n ·b n . Следовательно, откуда a −n >b −n , что и требовалось доказать.

      Последнее свойство степеней с целыми показателями доказывается так же, как аналогичное свойство степеней с натуральными показателями.

      Свойства степеней с рациональными показателями

      Степень с дробным показателем мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

    1. свойство произведения степеней с одинаковыми основаниями при a>0 , а если и , то при a≥0 ;
    2. свойство частного степеней с одинаковыми основаниями при a>0 ;
    3. свойство произведения в дробной степени при a>0 и b>0 , а если и , то при a≥0 и (или) b≥0 ;
    4. свойство частного в дробной степени при a>0 и b>0 , а если , то при a≥0 и b>0 ;
    5. свойство степени в степени при a>0 , а если и , то при a≥0 ;
    6. свойство сравнения степеней с равными рациональными показателями: для любых положительных чисел a и b , a0 справедливо неравенство a p p , а при p p >b p ;
    7. свойство сравнения степеней с рациональными показателями и равными основаниями: для рациональных чисел p и q , p>q при 0p q , а при a>0 – неравенство a p >a q .
    8. Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на свойствах арифметического корня n-ой степени и на свойствах степени с целым показателем. Приведем доказательства.

      По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

      Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

      По схожим принципам доказываются и остальные равенства:

      Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b , a0 справедливо неравенство a p p , а при p p >b p . Запишем рациональное число p как m/n , где m – целое число, а n – натуральное. Условиям p 0 в этом случае будут эквивалентны условия m 0 соответственно. При m>0 и am m . Из этого неравенства по свойству корней имеем , а так как a и b – положительные числа, то на основе определения степени с дробным показателем полученное неравенство можно переписать как , то есть, a p p .

      Аналогично, при m m >b m , откуда , то есть, и a p >b p .

      Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q , p>q при 0p q , а при a>0 – неравенство a p >a q . Мы всегда можем привести к общему знаменателю рациональные числа p и q , пусть при этом мы получим обыкновенные дроби и , где m 1 и m 2 – целые числа, а n — натуральное. При этом условию p>q будет соответствовать условие m 1 >m 2 , что следует из правила сравнения обыкновенных дробей с одинаковыми знаменателями. Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 0m 1 m 2 , а при a>1 – неравенство a m 1 >a m 2 . Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 0p q , а при a>0 – неравенство a p >a q .

      Свойства степеней с иррациональными показателями

      Из того, как определяется степень с иррациональным показателем, можно заключить, что она обладает всеми свойствами степеней с рациональными показателями. Так для любых a>0 , b>0 и иррациональных чисел p и q справедливы следующие свойства степеней с иррациональными показателями :

      1. a p ·a q =a p+q ;
      2. a p:a q =a p−q ;
      3. (a·b) p =a p ·b p ;
      4. (a:b) p =a p:b p ;
      5. (a p) q =a p·q ;
      6. для любых положительных чисел a и b , a0 справедливо неравенство a p p , а при p p >b p ;
      7. для иррациональных чисел p и q , p>q при 0p q , а при a>0 – неравенство a p >a q .
      8. Отсюда можно сделать вывод, что степени с любыми действительными показателями p и q при a>0 обладают этими же свойствами.

    • Алгебра – 10 класс. Тригонометрические уравнения Урок и презентация на тему: "Решение простейших тригонометрических уравнений" Дополнительные материалы Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы […]
    • Открыт конкурс на позицию «ПРОДАВЕЦ - КОНСУЛЬТАНТ»: Обязанности: продажа мобильных телефонов и аксессуаров для мобильной связи сервисное обслуживание абонентов Билайн, Теле2, МТС подключение тарифных планов и услуг Билайн и Теле2, МТС консультирование […]
    • Параллелепипед формулы Параллелепипед – это многогранник с 6 гранями, каждая из которых является параллелограммом. Прямоугольный параллелепипед – это параллелепипед, каждая грань которого является прямоугольником. Любой параллелепипед характеризуется 3 […]
    • Принять закон о Родовых поместьях Принять федеральный закон о безвозмездном выделении каждому желающему гражданину Российской Федерации или семье граждан участка земли для обустройства на нем Родового Поместья на следующих условиях: 1. Участок выделяется для […]
    • Общество защиты прав потребителя астана Для того, что бы получить pin-код для доступа к данному документу на нашем сайте, отправьте sms-сообщение с текстом zan на номер Абоненты GSM-операторов (Activ, Kcell, Beeline, NEO, Tele2) отправив SMS на номер, […]
    • ИНСПЕКЦИЯ ГОСТЕХНАДЗОРА БРЯНСКОЙ ОБЛАСТИ Квитанция об оплате госпошлины(Скачать-12,2 kb) Заявления на регистрацию для физ.лиц(Скачать-12 kb) Заявления на регистрацию для юр.лиц(Скачать-11,4 kb) 1. При регистрации новой машины: 1.заявление 2.паспорт […]
    • ПРАВОПИСАНИЕ Н И НН В РАЗНЫХ ЧАСТЯХ РЕЧИ С.Г.ЗЕЛИНСКАЯ ДИДАКТИЧЕСКИЙ МАТЕРИАЛ Теоретическая зарядка 1. Когда в прилагательных пишется нн? 2. Назовите исключения из этих правил. 3. Как отличить отглагольное прилагательное с суффиксом -н- от причастия с […]
    • Пивоев В.М. Философия и методология науки: учебное пособие для магистров и аспирантов Петрозаводск: Изд-во ПетрГУ, 2013. ― 320 с.ISBN 978-5-821-1647-0 PDF 3 mb Учебное пособие предназначено для студентов старших курсов, магистров и аспирантов социального и […]

  • После того как определена степень числа , логично поговорить про свойства степени . В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров.

    Навигация по странице.

    Свойства степеней с натуральными показателями

    По определению степени с натуральным показателем степень a n представляет собой произведение n множителей, каждый из которых равен a . Отталкиваясь от этого определения, а также используя свойства умножения действительных чисел , можно получить и обосновать следующие свойства степени с натуральным показателем :

    1. основное свойство степени a m ·a n =a m+n , его обобщение ;
    2. свойство частного степеней с одинаковыми основаниями a m:a n =a m−n ;
    3. свойство степени произведения (a·b) n =a n ·b n , его расширение ;
    4. свойство частного в натуральной степени (a:b) n =a n:b n ;
    5. возведение степени в степень (a m) n =a m·n , его обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k ;
    6. сравнение степени с нулем:
      • если a>0 , то a n >0 для любого натурального n ;
      • если a=0 , то a n =0 ;
      • если a<0 и показатель степени является четным числом 2·m , то a 2·m >0 , если a<0 и показатель степени есть нечетное число 2·m−1 , то a 2·m−1 <0 ;
    7. если a и b – положительные числа и a
    8. если m и n такие натуральные числа, что m>n , то при 00 справедливо неравенство a m >a n .

    Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами. Например, основное свойство дроби a m ·a n =a m+n при упрощении выражений часто применяется в виде a m+n =a m ·a n .

    Теперь рассмотрим каждое из них подробно.

      Начнем со свойства произведения двух степеней с одинаковыми основаниями, которое называют основным свойством степени : для любого действительного числа a и любых натуральных чисел m и n справедливо равенство a m ·a n =a m+n .

      Докажем основное свойство степени. По определению степени с натуральным показателем произведение степеней с одинаковыми основаниями вида a m ·a n можно записать как произведение . В силу свойств умножения полученное выражение можно записать как , а это произведение есть степень числа a с натуральным показателем m+n , то есть, a m+n . На этом доказательство завершено.

      Приведем пример, подтверждающий основное свойство степени. Возьмем степени с одинаковыми основаниями 2 и натуральными степенями 2 и 3 , по основному свойству степени можно записать равенство 2 2 ·2 3 =2 2+3 =2 5 . Проверим его справедливость, для чего вычислим значения выражений 2 2 ·2 3 и 2 5 . Выполняя возведение в степень , имеем 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 и 2 5 =2·2·2·2·2=32 , так как получаются равные значения, то равенство 2 2 ·2 3 =2 5 - верное, и оно подтверждает основное свойство степени.

      Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями. Так для любого количества k натуральных чисел n 1 , n 2 , …, n k справедливо равенство a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k .

      Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

      Можно переходить к следующему свойству степеней с натуральным показателем – свойству частного степеней с одинаковыми основаниями : для любого отличного от нуля действительного числа a и произвольных натуральных чисел m и n , удовлетворяющих условию m>n , справедливо равенство a m:a n =a m−n .

      Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0 n =0 , а при знакомстве с делением мы условились, что на нуль делить нельзя. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Действительно, при m>n показатель степени a m−n является натуральным числом, в противном случае он будет либо нулем (что происходит при m−n ), либо отрицательным числом (что происходит при m

      Доказательство. Основное свойство дроби позволяет записать равенство a m−n ·a n =a (m−n)+n =a m . Из полученного равенства a m−n ·a n =a m и из следует, что a m−n является частным степеней a m и a n . Этим доказано свойство частного степеней с одинаковыми основаниями.

      Приведем пример. Возьмем две степени с одинаковыми основаниями π и натуральными показателями 5 и 2 , рассмотренному свойству степени отвечает равенство π 5:π 2 =π 5−3 =π 3 .

      Теперь рассмотрим свойство степени произведения : натуральная степень n произведения двух любых действительных чисел a и b равна произведению степеней a n и b n , то есть, (a·b) n =a n ·b n .

      Действительно, по определению степени с натуральным показателем имеем . Последнее произведение на основании свойств умножения можно переписать как , что равно a n ·b n .

      Приведем пример: .

      Данное свойство распространяется на степень произведения трех и большего количества множителей. То есть, свойство натуральной степени n произведения k множителей записывается как (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n .

      Для наглядности покажем это свойство на примере. Для произведения трех множителей в степени 7 имеем .

      Следующее свойство представляет собой свойство частного в натуральной степени : частное действительных чисел a и b , b≠0 в натуральной степени n равно частному степеней a n и b n , то есть, (a:b) n =a n:b n .

      Доказательство можно провести, используя предыдущее свойство. Так (a:b) n ·b n =((a:b)·b) n =a n , а из равенства (a:b) n ·b n =a n следует, что (a:b) n является частным от деления a n на b n .

      Запишем это свойство на примере конкретных чисел: .

      Теперь озвучим свойство возведения степени в степень : для любого действительного числа a и любых натуральных чисел m и n степень a m в степени n равна степени числа a с показателем m·n , то есть, (a m) n =a m·n .

      Например, (5 2) 3 =5 2·3 =5 6 .

      Доказательством свойства степени в степени является следующая цепочка равенств: .

      Рассмотренное свойство можно распространить на степень в степени в степени и т.д. Например, для любых натуральных чисел p , q , r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

      Осталось остановиться на свойствах сравнения степеней с натуральным показателем.

      Начнем с доказательства свойства сравнения нуля и степени с натуральным показателем.

      Для начала обоснуем, что a n >0 при любом a>0 .

      Произведение двух положительных чисел является положительным числом, что следует из определения умножения. Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. А степень числа a с натуральным показателем n по определению является произведением n множителей, каждый из которых равен a . Эти рассуждения позволяют утверждать, что для любого положительного основания a степень a n есть положительное число. В силу доказанного свойства 3 5 >0 , (0,00201) 2 >0 и .

      Достаточно очевидно, что для любого натурального n при a=0 степень a n есть нуль. Действительно, 0 n =0·0·…·0=0 . К примеру, 0 3 =0 и 0 762 =0 .

      Переходим к отрицательным основаниям степени.

      Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m , где m - натуральное. Тогда . По каждое из произведений вида a·a равно произведению модулей чисел a и a , значит, является положительным числом. Следовательно, положительным будет и произведение и степень a 2·m . Приведем примеры: (−6) 4 >0 , (−2,2) 12 >0 и .

      Наконец, когда основание степени a является отрицательным числом, а показатель степени есть нечетное число 2·m−1 , то . Все произведения a·a являются положительными числами, произведение этих положительных чисел также положительно, а его умножение на оставшееся отрицательное число a дает в итоге отрицательное число. В силу этого свойства (−5) 3 <0 , (−0,003) 17 <0 и .

      Переходим к свойству сравнения степеней с одинаковыми натуральными показателями, которое имеет следующую формулировку: из двух степеней с одинаковыми натуральными показателями n меньше та, основание которой меньше, а больше та, основание которой больше. Докажем его.

      Неравенство a n свойств неравенств справедливо и доказываемое неравенство вида a n (2,2) 7 и .

      Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями. Сформулируем его. Из двух степеней с натуральными показателями и одинаковыми положительными основаниями, меньшими единицы, больше та степень, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше. Переходим к доказательству этого свойства.

      Докажем, что при m>n и 00 в силу исходного условия m>n , откуда следует, что при 0

      Осталось доказать вторую часть свойства. Докажем, что при m>n и a>1 справедливо a m >a n . Разность a m −a n после вынесения a n за скобки принимает вид a n ·(a m−n −1) . Это произведение положительно, так как при a>1 степень a n есть положительное число, и разность a m−n −1 есть положительное число, так как m−n>0 в силу начального условия, и при a>1 степень a m−n больше единицы. Следовательно, a m −a n >0 и a m >a n , что и требовалось доказать. Иллюстрацией этого свойства служит неравенство 3 7 >3 2 .

    Свойства степеней с целыми показателями

    Так как целые положительные числа есть натуральные числа, то все свойства степеней с целыми положительными показателями в точности совпадают со свойствами степеней с натуральными показателями, перечисленными и доказанными в предыдущем пункте.

    Степень с целым отрицательным показателем , а также степень с нулевым показателем мы определяли так, чтобы оставались справедливыми все свойства степеней с натуральными показателями, выражаемые равенствами. Поэтому, все эти свойства справедливы и для нулевых показателей степени, и для отрицательных показателей, при этом, конечно, основания степеней отличны от нуля.

    Итак, для любых действительных и отличных от нуля чисел a и b , а также любых целых чисел m и n справедливы следующие свойства степеней с целыми показателями :

    1. a m ·a n =a m+n ;
    2. a m:a n =a m−n ;
    3. (a·b) n =a n ·b n ;
    4. (a:b) n =a n:b n ;
    5. (a m) n =a m·n ;
    6. если n – целое положительное число, a и b – положительные числа, причем ab −n ;
    7. если m и n – целые числа, причем m>n , то при 01 выполняется неравенство a m >a n .

    При a=0 степени a m и a n имеют смысл лишь когда и m , и n положительные целые числа, то есть, натуральные числа. Таким образом, только что записанные свойства также справедливы для случаев, когда a=0 , а числа m и n – целые положительные.

    Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами. Для примера докажем, что свойство степени в степени выполняется как для целых положительных чисел, так и для целых неположительных чисел. Для этого нужно показать, что если p есть нуль или натуральное число и q есть нуль или натуральное число, то справедливы равенства (a p) q =a p·q , (a −p) q =a (−p)·q , (a p) −q =a p·(−q) и (a −p) −q =a (−p)·(−q) . Сделаем это.

    Для положительных p и q равенство (a p) q =a p·q доказано в предыдущем пункте. Если p=0 , то имеем (a 0) q =1 q =1 и a 0·q =a 0 =1 , откуда (a 0) q =a 0·q . Аналогично, если q=0 , то (a p) 0 =1 и a p·0 =a 0 =1 , откуда (a p) 0 =a p·0 . Если же и p=0 и q=0 , то (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1 , откуда (a 0) 0 =a 0·0 .

    Теперь докажем, что (a −p) q =a (−p)·q . По определению степени с целым отрицательным показателем , тогда . По свойству частного в степени имеем . Так как 1 p =1·1·…·1=1 и , то . Последнее выражение по определению является степенью вида a −(p·q) , которую в силу правил умножения можно записать как a (−p)·q .

    Аналогично .

    И .

    По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств.

    В предпоследнем из записанных свойств стоит остановиться на доказательстве неравенства a −n >b −n , которое справедливо для любого целого отрицательного −n и любых положительных a и b , для которых выполняется условие a. Так как по условию a0 . Произведение a n ·b n тоже положительно как произведение положительных чисел a n и b n . Тогда полученная дробь положительна как частное положительных чисел b n −a n и a n ·b n . Следовательно, откуда a −n >b −n , что и требовалось доказать.

    Последнее свойство степеней с целыми показателями доказывается так же, как аналогичное свойство степеней с натуральными показателями.

    Свойства степеней с рациональными показателями

    Степень с дробным показателем мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

    Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на и на свойствах степени с целым показателем. Приведем доказательства.

    По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

    Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

    По схожим принципам доказываются и остальные равенства:

    Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b , a b p . Запишем рациональное число p как m/n , где m – целое число, а n – натуральное. Условиям p<0 и p>0 в этом случае будут эквивалентны условия m<0 и m>0 соответственно. При m>0 и a

    Аналогично, при m<0 имеем a m >b m , откуда , то есть, и a p >b p .

    Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q , p>q при 00 – неравенство a p >a q . Мы всегда можем привести к общему знаменателю рациональные числа p и q , пусть при этом мы получим обыкновенные дроби и , где m 1 и m 2 – целые числа, а n - натуральное. При этом условию p>q будет соответствовать условие m 1 >m 2 , что следует из . Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 01 – неравенство a m 1 >a m 2 . Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 00 – неравенство a p >a q .

    Свойства степеней с иррациональными показателями

    Из того, как определяется степень с иррациональным показателем , можно заключить, что она обладает всеми свойствами степеней с рациональными показателями. Так для любых a>0 , b>0 и иррациональных чисел p и q справедливы следующие свойства степеней с иррациональными показателями :

    1. a p ·a q =a p+q ;
    2. a p:a q =a p−q ;
    3. (a·b) p =a p ·b p ;
    4. (a:b) p =a p:b p ;
    5. (a p) q =a p·q ;
    6. для любых положительных чисел a и b , a0 справедливо неравенство a p b p ;
    7. для иррациональных чисел p и q , p>q при 00 – неравенство a p >a q .

    Отсюда можно сделать вывод, что степени с любыми действительными показателями p и q при a>0 обладают этими же свойствами.

    Список литературы.

    • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
    • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
    • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
    • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
    • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
    • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

    Выражения, преобразование выражений

    Степенные выражения (выражения со степенями) и их преобразование

    В этой статье мы поговорим о преобразовании выражений со степенями. Сначала мы остановимся на преобразованиях, которые выполняются с выражениями любых видов, в том числе и со степенными выражениями, таких как раскрытие скобок, приведение подобных слагаемых. А дальше разберем преобразования, присущие именно выражениям со степенями: работа с основанием и показателем степени, использование свойств степеней и т.д.

    Навигация по странице.

    Что такое степенные выражения?

    Термин «степенные выражения» практически не встречается школьных учебниках математики, но он довольно часто фигурирует в сборниках задач, особенно предназначенных для подготовки к ЕГЭ и ОГЭ, например, . После анализа заданий, в которых требуется выполнить какие-либо действия со степенными выражениями, становится понятно, что под степенными выражениями понимают выражения, содержащие в своих записях степени. Поэтому, для себя можно принять такое определение:

    Определение.

    Степенные выражения – это выражения, содержащие степени.

    Приведем примеры степенных выражений . Причем будем их представлять согласно тому, как происходит развитие взглядов на от степени с натуральным показателем до степени с действительным показателем.

    Как известно, сначала происходит знакомство со степенью числа с натуральным показателем, на этом этапе появляются первые самые простые степенные выражения типа 3 2 , 7 5 +1 , (2+1) 5 , (−0,1) 4 , 3·a 2 −a+a 2 , x 3−1 , (a 2) 3 и т.п.

    Чуть позже изучается степень числа с целым показателем, что приводит к появлению степенных выражений с целыми отрицательными степенями, наподобие следующих: 3 −2 , , a −2 +2·b −3 +c 2 .

    В старших классах вновь возвращаются к степеням. Там вводится степень с рациональным показателем, что влечет появление соответствующих степенных выражений: , , и т.п. Наконец, рассматриваются степени с иррациональными показателями и содержащие их выражения: , .

    Перечисленными степенными выражениями дело не ограничивается: дальше в показатель степени проникает переменная, и возникают, например, такие выражения 2 x 2 +1 или . А после знакомства с , начинают встречаться выражения со степенями и логарифмами, к примеру, x 2·lgx −5·x lgx .

    Итак, мы разобрались с вопросом, что представляют собой степенные выражения. Дальше будем учиться преобразовывать их.

    Основные виды преобразований степенных выражений

    Со степенными выражениями можно выполнять любые из основных тождественных преобразований выражений . Например, можно раскрывать скобки, заменять числовые выражения их значениями, приводить подобные слагаемые и т.д. Естественно, при этом стоит надо соблюдать принятый порядок выполнения действий . Приведем примеры.

    Пример.

    Вычислите значение степенного выражения 2 3 ·(4 2 −12) .

    Решение.

    Согласно порядку выполнения действий сначала выполняем действия в скобках. Там, во-первых, заменяем степень 4 2 ее значением 16 (при необходимости смотрите ), и во-вторых, вычисляем разность 16−12=4 . Имеем 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4 .

    В полученном выражении заменяем степень 2 3 ее значением 8 , после чего вычисляем произведение 8·4=32 . Это и есть искомое значение.

    Итак, 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4=8·4=32 .

    Ответ:

    2 3 ·(4 2 −12)=32 .

    Пример.

    Упростить выражения со степенями 3·a 4 ·b −7 −1+2·a 4 ·b −7 .

    Решение.

    Очевидно, что данное выражение содержит подобные слагаемые 3·a 4 ·b −7 и 2·a 4 ·b −7 , и мы можем привести их: .

    Ответ:

    3·a 4 ·b −7 −1+2·a 4 ·b −7 =5·a 4 ·b −7 −1 .

    Пример.

    Представьте выражение со степенями в виде произведения.

    Решение.

    Справиться с поставленной задачей позволяет представление числа 9 в виде степени 3 2 и последующее использование формулы сокращенного умножения разность квадратов:

    Ответ:

    Также существует ряд тождественных преобразований, присущих именно степенным выражениям. Дальше мы их и разберем.

    Работа с основанием и показателем степени

    Встречаются степени, в основании и/или показателе которых находятся не просто числа или переменные, а некоторые выражения. В качестве примера приведем записи (2+0,3·7) 5−3,7 и (a·(a+1)−a 2) 2·(x+1) .

    При работе с подобными выражениями можно как выражение в основании степени, так и выражение в показателе заменить тождественно равным выражением на ОДЗ его переменных. Другими словами, мы можем по известным нам правилам отдельно преобразовывать основание степени, и отдельно – показатель. Понятно, что в результате этого преобразования получится выражение, тождественно равное исходному.

    Такие преобразования позволяют упрощать выражения со степенями или достигать других нужных нам целей. Например, в упомянутом выше степенном выражении (2+0,3·7) 5−3,7 можно выполнить действия с числами в основании и показателе, что позволит перейти к степени 4,1 1,3 . А после раскрытия скобок и приведения подобных слагаемых в основании степени (a·(a+1)−a 2) 2·(x+1) мы получим степенное выражение более простого вида a 2·(x+1) .

    Использование свойств степеней

    Один из главных инструментов преобразования выражений со степенями – это равенства, отражающие . Напомним основные из них. Для любых положительных чисел a и b и произвольных действительных чисел r и s справедливы следующие свойства степеней:

    • a r ·a s =a r+s ;
    • a r:a s =a r−s ;
    • (a·b) r =a r ·b r ;
    • (a:b) r =a r:b r ;
    • (a r) s =a r·s .

    Заметим, что при натуральных, целых, а также положительных показателях степени ограничения на числа a и b могут быть не столь строгими. Например, для натуральных чисел m и n равенство a m ·a n =a m+n верно не только для положительных a , но и для отрицательных, и для a=0 .

    В школе основное внимание при преобразовании степенных выражений сосредоточено именно на умении выбрать подходящее свойство и правильно его применить. При этом основания степеней обычно положительные, что позволяет использовать свойства степеней без ограничений. Это же касается и преобразования выражений, содержащих в основаниях степеней переменные – область допустимых значений переменных обычно такова, что на ней основания принимают лишь положительные значения, что позволяет свободно использовать свойства степеней. Вообще, нужно постоянно задаваться вопросом, а можно ли в данном случае применять какое-либо свойство степеней, ведь неаккуратное использование свойств может приводить к сужению ОДЗ и другим неприятностям. Детально и на примерах эти моменты разобраны в статье преобразование выражений с использованием свойств степеней . Здесь же мы ограничимся рассмотрением нескольких простых примеров.

    Пример.

    Представьте выражение a 2,5 ·(a 2) −3:a −5,5 в виде степени с основанием a .

    Решение.

    Сначала второй множитель (a 2) −3 преобразуем по свойству возведения степени в степень: (a 2) −3 =a 2·(−3) =a −6 . Исходное степенное выражение при этом примет вид a 2,5 ·a −6:a −5,5 . Очевидно, остается воспользоваться свойствами умножения и деления степеней с одинаковым основанием, имеем
    a 2,5 ·a −6:a −5,5 =
    a 2,5−6:a −5,5 =a −3,5:a −5,5 =
    a −3,5−(−5,5) =a 2 .

    Ответ:

    a 2,5 ·(a 2) −3:a −5,5 =a 2 .

    Свойства степеней при преобразовании степенных выражений используются как слева направо, так и справа налево.

    Пример.

    Найти значение степенного выражения .

    Решение.

    Равенство (a·b) r =a r ·b r , примененное справа налево, позволяет от исходного выражения перейти к произведению вида и дальше . А при умножении степеней с одинаковыми основаниями показатели складываются: .

    Можно было выполнять преобразование исходного выражения и иначе:

    Ответ:

    .

    Пример.

    Дано степенное выражение a 1,5 −a 0,5 −6 , введите новую переменную t=a 0,5 .

    Решение.

    Степень a 1,5 можно представить как a 0,5·3 и дальше на базе свойства степени в степени (a r) s =a r·s , примененного справа налево, преобразовать ее к виду (a 0,5) 3 . Таким образом, a 1,5 −a 0,5 −6=(a 0,5) 3 −a 0,5 −6 . Теперь легко ввести новую переменную t=a 0,5 , получаем t 3 −t−6 .

    Ответ:

    t 3 −t−6 .

    Преобразование дробей, содержащих степени

    Степенные выражения могут содержать дроби со степенями или представлять собой такие дроби. К таким дробям в полной мере применимы любые из основных преобразований дробей , которые присущи дробям любого вида. То есть, дроби, которые содержат степени, можно сокращать, приводить к новому знаменателю, работать отдельно с их числителем и отдельно со знаменателем и т.д. Для иллюстрации сказанных слов рассмотрим решения нескольких примеров.

    Пример.

    Упростить степенное выражение .

    Решение.

    Данное степенное выражение представляет собой дробь. Поработаем с ее числителем и знаменателем. В числителе раскроем скобки и упростим полученное после этого выражение, используя свойства степеней, а в знаменателе приведем подобные слагаемые:

    И еще изменим знак знаменателя, поместив минус перед дробью: .

    Ответ:

    .

    Приведение содержащих степени дробей к новому знаменателю проводится аналогично приведению к новому знаменателю рациональных дробей. При этом также находится дополнительный множитель и выполняется умножение на него числителя и знаменателя дроби. Выполняя это действие, стоит помнить, что приведение к новому знаменателю может приводить к сужению ОДЗ. Чтобы этого не происходило, нужно, чтобы дополнительный множитель не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

    Пример.

    Приведите дроби к новому знаменателю: а) к знаменателю a , б) к знаменателю .

    Решение.

    а) В этом случае довольно просто сообразить, какой дополнительный множитель помогает достичь нужного результата. Это множитель a 0,3 , так как a 0,7 ·a 0,3 =a 0,7+0,3 =a . Заметим, что на области допустимых значений переменной a (это есть множество всех положительных действительных чисел) степень a 0,3 не обращается в нуль, поэтому, мы имеем право выполнить умножение числителя и знаменателя заданной дроби на этот дополнительный множитель:

    б) Присмотревшись повнимательнее к знаменателю, можно обнаружить, что

    и умножение этого выражения на даст сумму кубов и , то есть, . А это и есть новый знаменатель, к которому нам нужно привести исходную дробь.

    Так мы нашли дополнительный множитель . На области допустимых значений переменных x и y выражение не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:

    Ответ:

    а) , б) .

    В сокращении дробей, содержащих степени, также нет ничего нового: числитель и знаменатель представляются в виде некоторого количества множителей, и сокращаются одинаковые множители числителя и знаменателя.

    Пример.

    Сократите дробь: а) , б) .

    Решение.

    а) Во-первых, числитель и знаменатель можно сократить на чисел 30 и 45 , который равен 15 . Также, очевидно, можно выполнить сокращение на x 0,5 +1 и на . Вот что мы имеем:

    б) В этом случае одинаковых множителей в числителе и знаменателе сразу не видно. Чтобы получить их, придется выполнить предварительные преобразования. В данном случае они заключаются в разложении знаменателя на множители по формуле разности квадратов:

    Ответ:

    а)

    б) .

    Приведение дробей к новому знаменателю и сокращение дробей в основном используется для выполнения действий с дробями. Действия выполняются по известным правилам. При сложении (вычитании) дробей, они приводятся к общему знаменателю, после чего складываются (вычитаются) числители, а знаменатель остается прежним. В результате получается дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей. Деление на дробь есть умножение на дробь, обратную ей.

    Пример.

    Выполните действия .

    Решение.

    Сначала выполняем вычитание дробей, находящихся в скобках. Для этого приводим их к общему знаменателю, который есть , после чего вычитаем числители:

    Теперь умножаем дроби:

    Очевидно, возможно сокращение на степень x 1/2 , после которого имеем .

    Еще можно упростить степенное выражение в знаменателе, воспользовавшись формулой разность квадратов: .

    Ответ:

    Пример.

    Упростите степенное выражение .

    Решение.

    Очевидно, данную дробь можно сократить на (x 2,7 +1) 2 , это дает дробь . Понятно, что надо еще что-то сделать со степенями икса. Для этого преобразуем полученную дробь в произведение . Это дает нам возможность воспользоваться свойством деления степеней с одинаковыми основаниями: . И в заключение процесса переходим от последнего произведения к дроби .

    Ответ:

    .

    И еще добавим, что можно и во многих случаях желательно множители с отрицательными показателями степени переносить из числителя в знаменатель или из знаменателя в числитель, изменяя знак показателя. Такие преобразования часто упрощают дальнейшие действия. Например, степенное выражение можно заменить на .

    Преобразование выражений с корнями и степенями

    Часто в выражениях, в которыми требуется провести некоторые преобразования, вместе со степенями с дробными показателями присутствуют и корни. Чтобы преобразовать подобное выражение к нужному виду, в большинстве случаев достаточно перейти только к корням или только к степеням. Но поскольку работать со степенями удобнее, обычно переходят от корней к степеням. Однако, осуществлять такой переход целесообразно тогда, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков (это мы подробно разобрали в статье переход от корней к степеням и обратно После знакомства со степенью с рациональным показателем вводится степень с иррациональным показателем, что позволяет говорить и о степени с произвольным действительным показателем. На этом этапе в школе начинает изучаться показательная функция , которая аналитически задается степенью, в основании которой находится число, а в показателе – переменная. Так мы сталкиваемся со степенными выражениями, содержащими числа в основании степени, а в показателе - выражения с переменными, и естественно возникает необходимость выполнения преобразований таких выражений.

    Следует сказать, что преобразование выражений указанного вида обычно приходится выполнять при решении показательных уравнений и показательных неравенств , и эти преобразования довольно просты. В подавляющем числе случаев они базируются на свойствах степени и нацелены по большей части на то, чтобы в дальнейшем ввести новую переменную. Продемонстрировать их нам позволит уравнение 5 2·x+1 −3·5 x ·7 x −14·7 2·x−1 =0 .

    Во-первых, степени, в показателях которых находится сумма некоторой переменной (или выражения с переменными) и числа, заменяются произведениями. Это относится к первому и последнему слагаемым выражения из левой части:
    5 2·x ·5 1 −3·5 x ·7 x −14·7 2·x ·7 −1 =0 ,
    5·5 2·x −3·5 x ·7 x −2·7 2·x =0 .

    Дальше выполняется деление обеих частей равенства на выражение 7 2·x , которое на ОДЗ переменной x для исходного уравнения принимает только положительные значения (это стандартный прием решения уравнений такого вида, речь сейчас не о нем, так что сосредоточьте внимание на последующих преобразованиях выражений со степенями):

    Теперь сокращаются дроби со степенями, что дает .

    Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению , которое равносильно . Проделанные преобразования позволяют ввести новую переменную , что сводит решение исходного показательного уравнения к решению квадратного уравнения

  • И. В. Бойков, Л. Д. Романова Сборник задач для подготовки к ЕГЭ. Ч. 1. Пенза 2003.