Длины волн света разных цветов. Диапазоны излучения и вещество. Основные и дополнительные цвета

В природе не существует цветов как таковых. Каждый оттенок, который мы видим, задает та или иная длина волны. образуется под воздействием самых длинных волн и представляет собой одну из двух граней видимого спектра.

О природе цвета

Возникновение того или иного цвета можно объяснить благодаря законам физики. Все цвета и оттенки являются результатами обработки мозгом информации, поступающей через глаза в форме световых волн различной длины. При отсутствии волн люди видят а при единовременном воздействии всего спектра - белый.

Цвета предметов определяются способностью их поверхностей поглощать волны определенной длины и отталкивать все остальные. Также имеет значение освещенность: чем ярче свет, тем интенсивнее отражаются волны, и тем ярче выглядит объект.

Люди способны различать более ста тысяч цветов. Любимые многими алые, бордовые и вишневые оттенки образуются самыми длинными волнами. Однако чтобы человеческий глаз мог увидеть красный цвет, не должна превышать 700 нанометров. За этим порогом начинается невидимый для людей инфракрасный спектр. Противоположная граница, отделяющая фиолетовые оттенки от ультрафиолетового спектра, находится на уровне около 400 нм.

Цветовой спектр

Спектр цветов как некоторая их совокупность, распределенная в порядке возрастания длины волны, был открыт Ньютоном в ходе проведения его знаменитых экспериментов с призмой. Именно он выделил 7 явно различимых цветов, а среди них - 3 основных. Красный цвет относится и к различимым, и к основным. Все оттенки, которые различают люди - это видимая область обширного электромагнитного спектра. Таким образом, цвет - это электромагнитная волна определенной длины, не короче 400, но не длиннее 700 нм.

Ньютон заметил, что пучки света разных цветов имели разные степени преломления. Если выражаться более корректно, то стекло преломляло их по-разному. Максимальной скорости прохождения лучей через вещество и, как следствие, наименьшей преломляемости способствовала наибольшая длина волны. Красный цвет является видимым отображением наименее преломляемых лучей.

Волны, образующие красный цвет

Электромагнитная волна характеризуется такими параметрами, как длина, частота и Под длиной волны (λ) принято понимать наименьшее расстояние между ее точками, которые колеблются в одинаковых фазах. Основные единицы измерения длины волн:

  • микрон (1/1000000 метра);
  • миллимикрон, или нанометр (1/1000 микрона);
  • ангстрем (1/10 миллимикрона).

Максимально возможная длина волны красного цвета равна 780 ммк (7800 ангстрем) при прохождении через вакуум. Минимальная длина волны этого спектра - 625 ммк (6250 ангстрем).

Другой существенный показатель - частота колебаний. Она взаимосвязана с длиной, поэтому волна может быть задана любой из этих величин. Частота волн красного цвета находится в пределах от 400 до 480 Гц. Энергия фотонов при этом образует диапазон от 1,68 до 1,98 эВ.

Температура красного цвета

Оттенки, которые человек подсознательно воспринимает как теплые либо холодные, с научной точки зрения, как правило, имеют противоположный температурный режим. Цвета, ассоциируемые с солнечным светом - красный, оранжевый, желтый - принято рассматривать как теплые, а противоположные им - как холодные.

Однако теория излучения доказывает обратное: у красных оттенков намного ниже, чем у синих. На деле это легко подтвердить: горячие молодые звезды имеют а угасающие - красный; металл при раскаливании сначала становится красным, затем желтым, а после - белым.

Согласно закону Вина, существует обратная взаимосвязь между степенью нагрева волны и ее длиной. Чем сильнее нагревается объект, тем большая мощность приходится на излучения из области коротких волн, и наоборот. Остается лишь вспомнить, где в видимом спектре существует наибольшая длина волны: красный цвет занимает позицию, контрастную синим тонам, и является наименее теплым.

Оттенки красного

В зависимости от конкретного значения, которое имеет длина волны, красный цвет приобретает различные оттенки: алый, малиновый, бордовый, кирпичный, вишневый и т. д.

Оттенок характеризуется 4 параметрами. Это такие, как:

  1. Тон - место, которое цвет занимает в спектре среди 7 видимых цветов. Длина электромагнитной волны задает именно тон.
  2. Яркость - определяется силой излучения энергии определенного цветового тона. Предельное снижение яркости приводит к тому, что человек увидит черный цвет. При постепенном повышении яркости появится за ним - бордовый, после - алый, а при максимальном повышении энергии - ярко-красный.
  3. Светлость - характеризует близость оттенка к белому. Белый цвет - это результат смешивания волн различных спектров. При последовательном наращивании этого эффекта красный цвет превратится в малиновый, после - в розовый, затем - в светло-розовый и, наконец, в белый.
  4. Насыщенность - определяет удаленность цвета от серого. Серый цвет по своей природе - это три основных цвета, смешанные в разных количествах при понижении яркости излучения света до 50%.

Электромагнитный спектр условно делится на диапазоны. В результате их рассмотрения необходимо знать следующее.

  • Название диапазонов электромагнитных волн.
  • Порядок их следования.
  • Границы диапазонов в длинах волн или частотах.
  • Чем обусловлено поглощение или излучение волн того или иного диапазона.
  • Использование каждого типа электромагнитных волн.
  • Источники излучения различных электромагнитных волн (естественные и искусственные).
  • Опасность каждого вида волн.
  • Примеры объектов, имеющих размеры, сравнимые с длиной волны соответствующего диапазона.
  • Понятие об излучении абсолютно черного тела.
  • Солнечное излучение и окна прозрачности атмосферы.

Диапазоны электромагнитных волн

Микроволновый диапазон

Микроволновое излучение используется для подогрева еды в микроволновых печах, мобильной связи, радарах (радиолокаторах), до 300 ГГц легко проходит атмосферу, поэтому пригодно для спутниковой связи. В этом диапазоне работают радиометры для дистанционного зондирования и определения температуры разных слоев атмосферы, а также радио телескопы. Этот диапазон является одним из ключевых для спектроскопии ЭПР и вращательных спектров молекул. Длительное воздействие на глаза вызывает катаракту. Мобильные телефоны отрицательно влияют на головной мозг.

Характерной особенностью микроволновых волн является то, что их длина волны сравнима с размерами аппаратуры. Поэтому в этом диапазоне приборы конструируются на основе распределенных элементов. Для передачи энергии используются волноводы и полосковые линии, а в качестве резонансных элементов – объемные резонаторы или резонансные линии. Рукотворными источниками МВ волн являются клистроны, магнетроны, лампы бегущей волны (ЛБВ), диоды Ганна, лавинно-пролетные диоды (ЛПД). Кроме того существуют мазеры, аналоги лазеров в длинноволновых диапазонах.

Микроволновые волны излучаются звездами.

В микроволновом диапазоне находится так называемое космическое фоновое микроволновое излучение (реликтовое излучение), которое по своим спектральным характеристикам полностью соответствует излучению абсолютно черного тела с температурой 2,72К. Максимум его интенсивности приходится на частоту 160 ГГц (1,9мм) (см. рис. ниже). Наличие этого излучения и его параметры являются одним из аргументов в пользу теории Большого Взрыва, которая в настоящее время является основой современной космологии. Последний, согласно, в частности, этим измерениям и наблюдениям, произошел 13,6 миллиардов лет назад.

Выше 300 ГГц (короче 1 мм) электромагнитные волны очень сильно поглощаются атмосферой Земли. Атмосфера начинает быть прозрачной в ИК и видимом диапазонах.

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый 380-440 680-790 2,82-3,26
Синий 440-485 620-680 2,56-2,82
Голубой 485-500 600-620 2,48-2,56
Зелёный 500-565 530-600 2,19-2,48
Жёлтый 565-590 510-530 2,10-2,19
Оранжевый 590-625 480-510 1,98-2,10
Красный 625-740 400-480 1,68-1,98

Среди лазеров и источников с их применением, излучающих в видимом диапазоне, можно назвать следующие: первый запущенный лазер, - рубиновый, с длиной волны 694,3 нм, диодные лазеры, к примеру на основе GaInP и AlGaInP для красного диапазона, и на основе GaN для синего диапазона, титан-сапфировый лазер, He-Ne лазер, лазеры на ионах аргона и криптона, лазер на парах меди, лазеры на красителях, лазеры с удвоением или суммированием частоты в нелинейных средах, рамановские лаэеры. (https://www.rp-photonics.com/visible_lasers.html?s=ak).

Долгое время существовала проблема в создании компактных лазеров в сине-зеленой части спектра. Имелись газовые лазеры, такие как аргоновый ионный лазер (с 1964 года), у которого две основные линии генерации лежат в синей и зеленой части спектра (488 и 514 нм) или гелий кадмиевый лазер. Однако для многих приложений они не годились из-за своей громоздкости и ограниченного количества линий генерации. Создать полупроводниковые лазеры с широкой запрещенной зоной не удавалось из-за огромных технологических трудностей. Однако в конечном итоге были разработаны эффективные методы удвоения и утроения частоты твердотельных лазеров ИК и оптического диапазона в нелинейных кристаллах, полупроводниковые лазеры на основе двойных соединений GaN и лазеров с повышением частоты накачки (upconversion lasers).

Источники света в сине зеленой области позволяют увеличить плотность записи на CD-ROM, качество репрографии, необходимы для создания полноцветных проекторов, для осуществления связи с подводными лодками, для снятия рельефа морского дна, для лазерного охлаждения отдельных атомов и ионов, для контроля за осаждением из газа (vapor deposition), в проточной цитометрии. (взято из “Compact blue-green lasers” by W. P. Risk et al).

Литература:

Ультрафиолетовый диапазон

Считается, что ультрафиолетовый диапазон занимает область от 10 до 380 нм. Хотя границы его четко не определены, особенно в коротковолновой области. Он делится на поддиапазоны и это деление также не является однозначным, так как в разных источниках привязано к различным физическим и биологическим процессам.

Так на сайте "Health Physics Society" ультрафиолетовый диапазон определен в границах 40 - 400 нм и делится на пять поддиапазонов: вакуумный УФ (40-190 нм), дальний УФ (190-220 нм), UVC (220-290 нм), UVB (290-320 нм), и UVA (320-400 нм) (черный свет). В англоязычной версии статьи об ультрафиолете в Википедии "Ultraviolet" под ультрафиолетовое излучение выделяется диапазон 40 - 400 нм, однако в таблице в тексте представляется его деление на кучу перекрывающихся поддиапазонов, начиная с 10 нм. В русскоязычной версии Википедии "Ультрафиолетовое излучение" с самого начала границы УФ диапазона устанавливаются в пределах 10 - 400нм. Кроме того в Википедии для диапазонов UVC, UVB и UVA указаны области 100 – 280, 280 – 315, 315 – 400 нм.

Ультрафиолетовое излучение несмотря на свое благотворное влияние в небольших количествах на биологические объекты является одновременно самым опасным из всех других естественных широкораспространенных излучений других диапазонов.

Основным естественным источником УФ излучения является Солнце. Однако не все излучение достигает Земли, так как поглощается озоновым слоем стратосферы и в области короче 200 нм очень сильно атмосферным кислородом.

UVC практически полностью поглощается атмосферой и не достигает земной поверхности. Этот диапазон используется бактерицидными лампами. Чрезмерная экспозиция приводит к повреждению роговицы и снежной слепоте, а также к тяжелым ожогам лица.

UVB наиболее разрушительная часть УФ излучения, так как она имеет достаточно энергии для повреждения ДНК. Она не полностью поглощается атмосферой (проходит около 2%). Это излучение необходимо для выработки (синтеза) витамина D, однако вредное влияние могут повлечь ожоги, катаракту и рак кожи. Эта часть излучения поглощается озоном атмосферы, снижение концентрации которого вызывает беспокойство.

UVA практически полностью достигает Земли (99%). Оно ответственно за загар, но чрезмерность приводит к ожогам. Как и UVB оно необходимо для синтеза витамина D. Облучение сверх меры приводит к подавлению иммунной системы, жесткости кожи и образованию катаракты. Излучение в этом диапазоне называют еще черным светом. Насекомые и птицы способны видеть этот свет.

На рисунке ниже для примера показана зависимость концентрации озона по высоте на северных широтах (желтая кривая) и уровень блокирования озоном солнечного ультрафиолета. UVC полностью поглощается до высот в 35 км. В то же время UVA почти полностью достигает поверхности Земли, однако это излучение практически не представляет какой-либо опасности. Озон задерживает большую часть UVB, однако некоторая его часть достигает Земли. В случае истощения озонового слоя большая часть будет облучать поверхность и приводить к генетическому повреждению живых существ.

Краткий список использования электромагнитных волн УФ диапазона.

  • Фотолитография высокого качеста для изготовления электронных устройств таких, как микропроцессоры и микросхем памяти.
  • При изготовлении оптоволоконных элементов, в частности брэгговских решеток.
  • Обеззараживание от микробов продуктов, воды, воздуха, предметов (UVC).
  • Черный свет (UVA) в криминалистике, в экспертизе произведений искусства, в установлении подлинности банкнот (явление флуоресценции).
  • Искусственный загар.
  • Лазерная гравировка.
  • Дерматология.
  • Стоматология (фотополимеризация пломб).

Рукотворными источниками ультрафиолетового излучения являются:

Немонохроматические: Ртутные газоразрядные лампы различных давлений и конструкций.

Монохроматические:

  1. Лазерные диоды, в основном на базе GaN, (небольшой мощности), генерирующие в ближнем ультрафиолетовом диапазоне;
  2. Эксимерные лазеры являются очень мощными источниками ультрафиолетового излучения. Они излучают наносекундные (пикосекундные и микросекундные) импульсы со средней мощностью от нескольких ватт до сотен ватт. Типичные длины волн лежат между 157 нм (F2) до 351 нм (XeF);
  3. Некоторые твердотельные лазеры, легированные церием, такие как Ce3+:LiCAF или Ce3+:LiLuF4, которые работают в импульсном режиме с наносекундными импульсами;
  4. Некоторые оптоволоконные лазеры, к примеру, легированные неодимом;
  5. Некоторые лазеры на красителях способны излучать ультрафиолет;
  6. Ионный аргоновый лазер, который, несмотря на то, что основные линии лежат в оптическом диапазоне, может генерировать непрерывное излучение с длинами волн 334 и 351 нм, но с меньшей мощностью;
  7. Азотный лазер, излучающий на длине волны 337 нм. Очень простой и дешевый лазер, работает в импульсном режиме с наносекундной длительностью импульсов и с пиковой мощностью несколько мегаватт;
  8. Утроенние частоты Nd:YAG лазера в нелинейных кристаллах;

Литература:

  1. Википедиа "Ultraviolet" .
Гц), а в качестве длинноволновой - 760-780 нм (395-385 ТГц) . Электромагнитное излучение с такими длинами волн также называется видимым светом , или просто светом (в узком смысле этого слова).

История

Первые объяснения причин возникновения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах .

Ньютон первый использовал слово спектр (лат. spectrum - видение, появление) в печати в 1671 году , описывая свои оптические опыты. Он обнаружил, что, когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся в прозрачной среде с различной скоростью. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.

Ньютон разделил свет на семь цветов: красный , оранжевый , жёлтый , зелёный , голубой , индиго и фиолетовый . Число семь он выбрал из убеждения (происходящего от древнегреческих софистов), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели . Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, поэтому некоторые люди не могут отличить его от голубого или фиолетового цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). В русской традиции индиго соответствует синему цвету.

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый ≤450 ≥667 ≥2,75
Синий 450-480 625-667 2,58-2,75
Сине-зелёный 480-510 588-625 2,43-2,58
Зелёный 510-550 545-588 2,25-2,43
Желто-зелёный 550-570 526-545 2,17-2,25
Жёлтый 570-590 508-526 2,10-2,17
Оранжевый 590-630 476-508 1,97-2,10
Красный ≥630 ≤476 ≤1,97

Указанные в таблице границы диапазонов носят условный характер, в действительности же цвета плавно переходят друг в друга, и расположение видимых наблюдателем границ между ними в большой степени зависит от условий наблюдения .

См. также

Примечания

  1. Гагарин А. П. Свет // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров . - М. : Большая российская энциклопедия, 1994. - Т. 4: Пойнтинга - Робертсона - Стримеры. - С. 460. - 704 с. - 40 000 экз. - ISBN 5-85270-087-8 .
  2. ГОСТ 8.332-78. Государственная система обеспечения единства измерений. Световые измерения. Значения относительной спектральной световой эффективности монохроматического излучения для дневного зрения

1. ОСОБЕННОСТИ ЦВЕТОВОСПРИЯТИЯ.

Сейчас известно, что цвет - это представление человека о видимой части спектра электромагнитного излучения. Свет воспринимается фоторецепторами, расположенными в задней части зрачка. Эти рецепторы преобразуют энергию электромагнитного излучения в электрические сигналы. Рецепторы сконцентрированы большей частью в ограниченной области сетчатки или ретины, которая называется ямкой. Эта часть сетчатки способна воспринимать детали изображения и цвет гораздо лучше, чем остальная ее часть. С помощью глазных мускул ямка смещается так, чтобы воспринимать разные участки окружающей среды. Обзорное поле, в котором хорошо различаются детали и цвет ограничено приблизительно 2-мя градусами.
Существует два типа рецепторов: палочки и колбочки. Палочки активны только при крайне низкой освещенности (ночное зрение) и не имеют практического значения при восприятии цветных изображений ; они более сконцентрированы по периферии обзорного поля. Колбочки ответственны за восприятие цвета и они сконцентрированы в ямке. Существует три типа колбочек, которые воспринимают длинные, средние и короткие длины волн светового излучения.

Каждый тип колбочек обладает собственной спектральной чувствительностью. Приблизительно считается, что первый тип воспринимает световые волны с длиной от 400 до 500 нм (условно "синюю " составляющую цвета ), второй - от 500 до 600 нм (условно "зеленую " составляющую) и третий - от 600 до 700 нм (условно "красную " составляющую). Цвет ощущается в зависимости от того, волны какой длины и интенсивности присутствуют в свете.

Глаз наиболее чувствителен к зеленым лучам, наименее - к синим . Экспериментально установлено, что среди излучений равной мощности наибольшее световое ощущение вызывает монохроматическое желто-зеленое излучение с длиной волны 555 нм. Спектральная чувствительность глаза зависит от внешней освещенности. В сумерках максимум спектральной световой эффективности сдвигается в сторону синих излучений , что вызвано разной спектральной чувствительностью палочек и колбочек. В темноте синий цвет оказывает большее влияние, чем красный , при равной мощности излучения, а на свету - наоборот.

Разные люди воспринимают один и тот же цвет по-разному. Восприятие цветов изменяется с возрастом, зависит от остроты зрения, от настроения и других факторов. Однако, такие различия относятся в основном к тонким оттенкам цвета , поэтому в целом можно утверждать, что большинство людей воспринимает основные цвета одинаково.

2. ЧТО ЕСТЬ ЦВЕТ?

Что такое цвет ? Физика рассматривает свет как электромагнитную волну. Волна - это просто изменение состояния среды или поля, распространяющееся в пространстве с какай-то скоростью. У любой волны есть длина - это расстояние между гребнями волны.

Те длины волн, которые способен воспринимать человеческий глаз носит название видимого света. Например, свет с наибольшей длиной волны мы воспринимаем как красный, а с наименьшей - как фиолетовый. При этом стоит отметить, что наше ухо тоже воспринимает волны, только очень большой длины волны и несколько другой природы. Звук - это колебания вещества. Например в вакууме нет частичек вещества (воздуха например). И там нет звука, звуковая волна не распространяется в вакууме.

Единицей измерения длины волны оптической области спектра излучений является нанометр (нм);

1 нм = 1 х 10 -3 мк (микрон) = 1 х 10 -6 мм (миллиметров).

Цвета , которые мы воспринимаем, различаются в зависимости от длины волны видимого света:

Цвет

Длина волны, нм

Красный

от 620 до 760

Оранжевый

от 585 до 620

Желтый

от 575 до 585

Зеленый

от 510 до 575

Голубой

от 480 до 510

Синий

от 450 до 480

Фиолетовый

от 380 до 450

Порядок расположения цветов просто запомнить по аббревиатуре слов: каждый охотник желает знать, где сидит фазан .

Резкой границы между цветами нет, но среди приведенных выше цветов отсутствует белый ...
Всё дело в том, что никакой определенной длины волны белому свету не соответствует. Тем не менее, границы диапазонов белого света и составляющих его цветов принято характеризовать их длинами волн в вакууме. Таким образом, белый свет - это сложный свет, совокупность волн длинами от 380 до 760 нм.

Причина, по которой человек способен видеть свет заключается в воздействии света определенных длин волн на глазную сетчатку.

При прохождении света через вещество, имеющее преломляющий угол, происходит разложение света на сотавляющие его цвета, при этом изменяются и скорость, и длина волны, а частота колебаний света остается неизменной.

Свет с длинами волн длиннее, чем самая длинная в спектре видимого света (красный цвет ), называется инфракрасным (от латинского слова infra - ниже; то есть ниже той части спектра, которую может воспринять глаз ). А свет с длинами волн короче наиболее коротких в видимом спектре называется ультрафиолетовым (от латинского слова ultra - более, сверх; то есть длина волны выше той, которую может воспринять глаз ).

Человеческому глазу не доступен ни инфракрасный, ни ультрафиолетовый свет, как и многие другие типы волн. Тем не менее мы можем воспринимать огромный диапазон различных цветов (диапазон волн).

3. ЦВЕТОВАЯ ГАРМОНИЯ.

В теории цвета цветовой круг содержит в себе все цвета , видимые человеком, от фиолетового до красного. Цветовой круг показывает, как цвета связаны между собой, и позволяет определять по определенным правилам гармоничные сочетания этих цветов.

Черный, белый и серый не обозначены на цветовом круге, так как, строго говоря, они не являются цветами. Это нейтральные тона .

3.1. Цветовые сочетания.

В цветовых схемах приведены гармоничные сочетание цветов. Заметьте, что цвета можно и нужно варьировать по насыщенности и светлоте (яркости) . И кстати, часто встречающаяся еще одна гармония : по насыщенности. На картинке представлены возможные варианты цветовой гармонии .


Не применяйте цвета в равных количествах. Сделайте лучше один цвет фоном , а другой пусть будет просто акцентом на нем. Интересно, что дополнительные цвета при смешении дают серый цвет (три основных цвета , кстати, тоже). Поэтому, если вы примените их рядом и в больших количествах, то в глазах зрителя будет происходить смешение до серого!

Вы можете поэксперементироватьь над этим, используя инструмент подбора цветов .

4. ОЩУЩЕНИЕ ГЛУБИНЫ.

Важную роль в создании цветовой композиции играет разделение цветов на теплые и холодные . Это разделение легко заметить на цветовом круге (см. рисунки выше). На этом круге выделяется "теплая" красно-желтая область и "холодная" синяя область , разделенная вертикальной линией. Это разделение трудно объяснить на уровне физики - разделение на "два лагеря" происходит, скорее, на уровне подсознания.

С детства мы привыкли, что солнце, огонь, углы и все источники тепла имеют красно-желтые оттенки , а снег, вода, небо - сине-голубые и сине-зеленые оттенки . Это закрепляется у нас в подсознании, и диктует нам восприятие цвета . Но есть также "нарушители" этого разбиения. Так, светло-бежевая луна, бордовые цвета являются холодными цветами, а светло-голубое свечение нагретых тел имеет теплый цвет .

Яркие, теплые тона создают эффект движения в сторону смотрящего и кажутся ближе. Теплые цвета привлекают внимание и хорошо подходят для выделения важных элементов публикации.

Холодные цвета кажутся удаляющимися и создают эффект движения в сторону от смотрящего. В комбинации, холодные цвета могут вызвать ощущение отчужденности и изоляции, а может, наоборот, быть успокаивающим и ободряющим.

Эффект движения, вызванный сочетанием теплых и холодных цветов , используется дизайнерами. Для фона ими выбирается холодные оттенки , а для объектов на переднем плане - теплые . Так, если Вы посмотрите на фотографии , сделанные на презентациях и пресс-конференциях, Вы увидите докладчиков на голубом фоне . Такой фон придает значительность и важность фигуре докладчика. Этот прием можно порекомендовать начинающим дизайнерам.

Как правило, лучше работают цветовые решения, основанные на доминировании холодной или теплой гаммы цветов, а не на равномерном смешении оттенков . При этом в комбинациях, где преобладают теплые тона , для оформления выделений и усиления контраста могут использоваться холодные оттенки , и наоборот.

> Видимый свет

Узнайте определение и характеристику видимого света : длина волны, диапазон электромагнитного излучения, частота, диаграмма спектров цвета, восприятие цвета.

Видимый свет

Видимый свет – часть электромагнитного спектра, доступная человеческому глазу. Электромагнитное излучение этого диапазона просто именуют светом. Глаза реагируют на длины волн видимого света 390-750 нм. По частоте это соответствует полосе в 400-790 ТГц. Адаптированный глаз обычно достигает максимальной чувствительности в 555 нм (540 ТГц) при зеленой области оптического спектра. Но сам спектр не вмещает все цвета, улавливаемые глазами и мозгом. Например, такие красочные, как розовый и пурпурный, создаются при сочетании нескольких длин волн.

Перед вами главные категории электромагнитных волн. Разделительные линии в некоторых местах отличается, а другие категории могут перекрываться. Микроволны занимают высокочастотный участок радиосекции электромагнитного спектра

Видимый свет формирует вибрации и вращения атомов и молекул, а также электронные транспортировки внутри них. Этими транспортировками пользуются приемники и детекторы.

Небольшая часть электромагнитного спектра вместе с видимым светом. Разделение между инфракрасным, видимым и ультрафиолетовым не выступает на 100% отличительным

На верхнем рисунке отображена часть спектра с цветами, которые отвечают за конкретные чистые длины волн. Красный – наиболее низкие частоты и самые длинные волны, а фиолетовый – наибольшие частоты и кратчайшие длины волн. Излучение солнечного черного тела достигает максимума в видимой части спектра, но наиболее интенсивно в красном, чем в фиолетовом, поэтому звезда кажется нам желтой.

Цвета, добытые светом узкой полосы длин волн, именуют чистыми спектральными. Не забывайте, что у каждого много оттенков, потому что спектр непрерывный. Любые снимки, предоставляющие данные с длин волн, отличаются от тех, что присутствуют в видимой части спектра.

Видимый свет и земная атмосфера

Видимый свет пробивается сквозь оптическое окно. Это «место» в электромагнитном спектре, пропускающее волны без сопротивления. В качестве примера можно вспомнить, что воздушный слой рассеивает голубой лучше красного, поэтому небеса кажутся нам синими.

Оптическое окно также именуют видимым, потому что оно перекрывает спектр, доступный человеку. Это не случайно. Наши предки развили видение, способное использовать огромное многообразие длин волн.

Благодаря наличию оптического окна мы можем наслаждаться относительно мягкими температурными условиями. Функция солнечной яркости достигает максимума в видимом диапазоне, который перемещается, не завися от оптического окна. Именно поэтому поверхность нагревается.

Фотосинтез

Эволюция сказалась не только на людях и животных, но и на растениях, которые приучились правильно реагировать на части электромагнитного спектра. Так, растительность трансформирует световую энергию в химическую. Фотосинтез использует газ и воду, создавая кислород. Это важный процесс для всей аэробной жизни на планете.

Эту часть спектра именуют фотосинтетически активной областью (400-700 нм), перекрывающейся с диапазоном человеческого зрения.