Что такое звезда для детей. Что такое звезды. Размеры, масса и светимость звезд

Если звезд а - это горячий сгусток газа , внутри которого постоянно происходит подобие взрыва с выбросом энергии и вещества, то почему с планеты звездный свет мерцает ? Оказывается, всё дело в атмосфере Земли . В воздухе перманентно возникают воздушные потоки , а также атмосфера планеты неоднородна , из-за чего падающие лучи искажаются - до атмосферы Земли идут прямолинейно , а входя в неё преломляются , превращаясь в некий зигзаг или волну с плавными изгибами . Мы смотрим на небо с одной точки (точнее точкой является наш глаз), которая улавливает этот то "теряющийся", то вновь появляющийся сигнал. Легко сбиться со счёта! Примечательно, что учёные выявили, сколько звёзд можно увидеть на ночном небе - около 6000 сияющих точек, 3000 с одного полушария и столько же с другого. Жаль только, что люди нечасто поднимают голову, чтобы увидеть целую плеяду ярких небесных тел , а выхлопы и городской смог полностью заполоняют доступ любознательных людей к ночному небу. Однажды остановка работы некоторых заводов в одном из штатов привела к тому, что перед людьми открылось наполненная звёздами черная картина . Люди, не видя раньше подобного зрелища, в панике начали звонить в службу чрезвычайных ситуаций, утверждая, что видят в небе НЛО. Некоторые всерьёз подумали, что началось инопланетное вторжение.

Живое пламя

Звёзды - не просто генератор газа и энергии , они схожи с живым организмом. В астрономии существует такое понятие, как звёздная эволюция . Звёзды рождаются из газово-пылевых сгустков, развиваются и растут . После отбытия своего жизненного цикла, в звезде начинают заканчиваться элементы . Первым кончается водород , следствием чего является усиленный синтез углерода и гелия - звезда увеличивается в размере. Далее она начинает активно терять газ , рассеивая его по космосу, также продолжая расти. Под конец своего развития звезда может превратиться:


Свет из прошлого

Поток света , или фотонов (частиц света) имеет огромную скорость - около 300 тысяч километров в секунду . Эту скорость невозможно уловить невооружённым взглядом: на Земле распространение света происходит быстро из-за того, что обычное расстояние, которое мы наблюдаем, незначительно для такой скорости. Но в масштабах космоса-то всё происходит иначе - свету, чтобы пройти расстояние от Солнца до Земли, требуется 8 минут . То есть, мы наблюдаем свет, который появился несколько минут назад ; и если Солнце потухнет вмиг (не бойтесь, такого не может произойти), то мы это поймём только спустя 8 минут, пока остатки солнечного света не дойдут до нас. Другие видимые нам звёзды находятся намного дальше Солнца , и световой поток от них доходил до нас миллионы лет . Мы видим свет из далёкого прошлого . Может, эти звёзды давно перешли на новый этап развития, может, слились с другими. Чтобы хоть немного приблизить будущее, существуют мощные телескопы . С их помощью возможно преодолеть громадное расстояние и сократить время прибытия света - увидеть прошлое, но не такое дальнее, как мы видим невооружённым глазом. Этот факт подтолкнул учёных на пару мысленных экспериментов :


Звёзды - это наши проводники в прошлое . Они открывают нам загадки древности, рассказывают вечные легенды тёмного и холодного космоса. Звёздный свет - путь, способный провести человека от Земли до дальних планет, галактик, до самого края Вселенной . Человечеству ещё многое предстоит узнать об этих сияющих небесных телах и кто знает, может быть мы застанем открытие новой звёздной тайны .

Удивительно, но звёзды состоят из материалов, которые входят в состав всей остальной Вселенной: водород (73 %), гелий (25 %), другие элементы (2 %). За исключением немногих различий - звёзды имеют в своём составе одинаковые вещества. Теория большого взрыва говорит о том, что 13,7 миллиардов лет назад Вселенная была плотной сферой высочайших температур (крайне горячей). Другими словами, вся Вселенная была огромной звездой.

Момент рождения

В плотной сфере было так горячо, как будто внутри неё находилось мощнейшее ядерное светило. По вселенским масштабам, за недолгий период времени водород трансформировался в гелий с помощью реакции ядерного синтеза. Вселенная постоянно расширялась и охлаждалась. Это привело к тому, что водород с гелием остыли и фактически стали вместе собираться из-за взаимного притяжения. Это и есть момент рождения звезды. В своём составе каждая звезда имеет водород и гелий в соотношении 73 % и 25 % соответственно.

Зная, из чего состоят звезды, учёные пошли дальше в изучении Вселенной. Небесные светила, которые образовались первыми, были огромными. Скорее всего, они взорвались. Но благодаря их жизни и смерти сформировались определённые тяжелые элементы, которые сегодня мы имеем на Земле: углерод, кислород, уран, золото.

Галактики

Известно, что во Вселенной существует не одна галактика. Когда наблюдаешь за ночным небом, невольно задаёшься вопросом: из чего состоят звезды и как они рождаются. Понятно, что звезды образовываются со времени зарождения самой Вселенной. Но происходит ли рождение новых звезд и правда ли, что звезды умирают?

Астрономы рассчитали, что ежегодно в нашей галактике, которая носит название Млечный Путь, зарождаются пять новых звезд. Среди них есть металлически богатые и металлически бедные. Богатые имеют в своём составе больше тяжелых элементов от предыдущих звезд, а металлически бедные - меньше. Интересно, а из чего состоят звезды, кроме как из гелия и водорода? Какие другие элементы входят в их состав? И чем они отличаются?

Составляющие элементы

Интересно, что соотношение элементов всегда остается более-менее равным. К примеру, Солнце богато металлами. Оно имеет внутри более высокое число тяжелых элементов, чем в среднем такие же звезды. Но и оно обладает соотношением: 71 % - водород, 27,1 % - гелий, остальные - азот, кислород, углерод. Водород в гелий преобразовывается внутри солнечного ядра уже 4,5 миллиарда лет.

А из чего состоят звезды, кроме водорода и гелия? Все ли небесные светила имеют одинаковый состав других элементов? Этот состав такой же, как у Солнца, или нет?

Ученый Вернадский В. И. говорил так о звездах, как о центре максимального сгущения энергии и материи в Галактике. Сегодня уже о звездах говорят не как о скоплении газа, а как о сверхплотных космических объектах с огромной массой. Предположительно, звезды по своему строению неоднородны. Они схожи в химических элементах, но имеют их в разном процентном соотношении.

Есть даже предположения, что аналог звезды - это шаровая молния. В её центре точечный источник - ядро, окруженное оболочкой из плазмы. Слой воздуха - это граница оболочки. Шаровая молния светится разными цветами и радиусами, вращается и имеет вес от восьми до десяти килограмм.

Размеры и объем звезд

Выше описано, из чего состоят звезды на небе, но почему они такие разные по объёму? Если Солнце изобразить в виде шара диаметром десять сантиметров, то всю Солнечную систему можно указать в виде круга с поперечником в восемьсот метров. Тогда самая близкая звезда к Солнцу, Проксима Центавра, будет на 2 700 км. Сириус будет на расстоянии 5 500 км, Альтаир - на 9 700 км, Вега - на 17 000 км. Арктур на расстоянии от главного нашего светила 23 000 км, Капелла - в 28 000 км, Регул - в 53 000 км, а Денеб - в 350 000 км.

По размеру звезды отличаются между собой. Солнце значительно уступает в своем объеме Сириусу, Альтаиру, Проциону, Бетельгейзе и Эпсилону Возничего. Но оно во много раз больше Проксимы Центавра и некоторых других звезд. В нашей галактике оной из самых больших звезд считается красный сверхгигант, находящийся в самом центре. Он больше, чем орбита Сатурна. Это гранатовая звезда Цефея.

Наблюдая за звёздами, люди ещё в древности заметили, что они скапливаются в причудливые формы, которые напоминают разные фигуры. Соответственно этим формам им стали давать названия.

Звездный охотник

Рассмотрим созвездие Орион - его пояс состоит из трех звезд, в трёх строчках. Имя дано в честь древнегреческого героя мифов - охотника. Сегодня Орион является очень известным созвездием, одним из крупнейших, очень заметных и узнаваемых. Большие звезды Ориона видны в обоих полушариях, так как находится его пояс на небесном экваторе. С октября по начало января вечером его видно в средних широтах Северного полушария, с конца июля по ноябрь можно увидеть утром. Орион полезно использовать в качестве помощника для осуществления поиска других звезд.

В древности люди еще не знали, из чего состоят звезды в космосе, но уже составляли карты звездного неба. Тогда художники, составляя звездную карту, иногда связывали окружающие созвездия с Орионом. Символически его изображали стоящим с двумя охотничьими собаками (Большим и Малым Псом) на берегу реки Эридан. При этом собаки боролись с Тельцом. Орион необычайно богат на яркие объекты.

Альфа Ориона - это Бетельгейзе. Она красная и превосходит размерами орбиту Марса. Но Бетельгейзе немного тусклее, чем бета Ригель. Это огромная сине-белая звезда, которая является одной из самых ярких на звездном небе. Особенно эффектным выглядят пояса Ориона из звезд: Минтака, Алнитак и Алнилам - дельта, зета и эпсилон соответственно. Это три яркие звезды, стоящие рядом друг с другом, благодаря которым и можно отличить Орион от других созвездий.

Большая Медведица: из каких звезд состоит созвездие и как оно образовалось?

Звездная Медведица тоже известна с древности. Греки считали её нимфой Каллисто, спутницей Артемиды, возлюбленной Зевса, навлекшей на себя гнев богини. Она нарушила правила спутниц Артемиды, и её превратили в медведицу, а бБогиня натравила на неё собак. Зевс, спасая возлюбленную, вознёс её на небо. Хотя говорят и о том, что это сам Зевс превратил Каллисто в медведицу, скрывая измены от своей ревнующей жены. Артемида устроила на медведицу охоту по ошибке или по наущению догадливой Геры. В общем, история запутанная, так как возможно, что Гера, мстя за измены, превратила Каллисто в созвездие. Охоту же на медведицу по ошибке устроил Аркад, сын Каллисто. Есть и другие истории про малую медведицу, про младенца Зевса и его нянь медведиц, скрывавшихся от Крона. Но так или иначе, мы наблюдаем за Большой Медведицей, её красотой и загадкой, связанной с её появлением.

Интересно, из каких звезд состоит Большая Медведица и где её наблюдают? Это созвездие хорошо видно в средних широтах. Здесь оно относится к незаходящим. На небе видно семь наиболее ярких звезд - ковш с ручкой. Их очень легко увидеть и отличить от других. Звезды относятся к категории второй величины. Среди них слабее только верхняя левая звезда так называемого ковша.

Две звезды

Кроме этих семи, насчитывается ещё 125, которые ярче, чем шестая величина. Это одно из самых больших созвездий. Его границы выходят намного дальше пределов так называемого ковша, звезды которого находятся на разных расстояниях от нас, начиная с 50 световых лет (это ближайшая звезда Алиот).

Среди известных созвездий есть и совсем маленькие по количеству насчитываемых в нём звезд. В вопросах по астрономии часто можно встретить вопрос: какое созвездие состоит всего из двух звезд, и где оно расположено на звездном небе. Это система эпсилон Возничего. Она состоит из двух звезд - видимой и невидимой. Видимая выглядит в созвездии Возничего как желтоватый огромный сверхгигант. Температура на его поверхности 6600 К. Она в 36 раз массивнее Солнца. Её диаметр в 190 раз больше солнечного. Однако даже её размеры меркнут на фоне второй звезды, диаметр которой в 2700 раз больше диаметра Солнца. Внутри неё можно свободно поместить орбиты всех планет солнечной системы, вплоть до Сатурна. Однако светимость этого сверхмощного гиганта мала (почти как у Солнца). Эта звезда очень холодная. Температура на поверхности составляет 1600 К.

Нейтронные звёзды

Существование звезд, обладающих ничтожно малыми размерами, по сравнению с Солнцем, было доказано относительно недавно. Реальность такого объекта стала очевидной в 1967 году, когда были открыты пульсары. Тогда Т. Голд предположил, что это и есть быстровращающиеся звезды, называемые нейтронными. Их существование предсказывалось еще физиками-теоретиками 30-х годах XX столетия. Первым из них был Лев Ландау. Какая особенность этих небесных объектов, из чего состоит нейтронная звезда и как образуется?

Изучая теорию небесных светил, было предположено, что нейтронные объекты должны быть около 10 км в размерах. Плотность вещества в центре таких звезд достигает плотности ядра атома: 2,8 х 1014 грамм/см³. В 1934 году было высказано предположение о том, что нейтронные звезды состоят из вырожденных нейтронов и образуются, когда вспыхивает сверхновая звезда.

Позже, с открытием пульсаров, это предположение подтвердилось. Рождение пульсаров - это грандиозное небесное явление, сопровождающееся вспышкой сверхновой взрывающейся звезды. Такие вспышки случаются примерно один раз в 25 лет. Получается, что за 15 млрд лет (время существования галактики) должна уже образоваться не одна сотня нейтронных звезд!

Пульсары

Основная функция пульсара - это появление мощных электрических полей, вырывающих заряженные частицы из звезды и ускоряющих их до высочайших показателей энергии. Это происходит за счет вращения и существования магнитного поля. Частицы, получившие ускорение, порождают кванты электромагнитного излучения (довольно жесткого состояния). Сложные электродинамические процессы небольшую часть энергии преобразуют в радиоволны, наблюдаемые от пульсаров. С вырванными с нейтронной звезды и ускоренными частицами энергия вращения затухает, период вращения пульсаров нарастает, и нейтронная звезда тормозит, благодаря собственному излучению!

При торможении электрический потенциал падает. В итоге наступает момент, когда заряженные частицы перестают образовываться и пульсар умирает. По времени это приблизительно 10 млн лет.

Черные дыры и другие объекты глубокого космоса

Если масса нейтронной звезды превышает 3 массы Солнца, никакое давление вещества не может противодействовать силам гравитации, и звезда исчезает под горизонт - образуется черная дыра. Нейтронные звезды (пульсары и черные дыры) относятся к объектам глубокого космоса, которые находятся за пределами солнечной системы. Там же существуют и другие объекты, тоже относящиеся к понятию глубокий космос: экзопланеты, туманности, звездные скопления, квазары, галактики, темная энергия и темная материя. Все эти объекты притягивают большой интерес со стороны ученых. Безусловно, изучение небесных светил, особенно объектов глубокого космоса, очень интересно и важно для развития астрономии как науки и реализации важнейших научных проектов.

Невооруженным глазом на небе в безлунную ночь и вдалеке от города видно огромное количество звезд. При помощи телескопа можно наблюдать еще больше светил. Профессиональная аппаратура позволяет определить их цвет и размер, а также светимость. Вопрос «из чего состоят звезды?» на протяжении длительного времени в истории астрономии оставался одним из самых спорных. Однако и его удалось решить. Сегодня ученым известно, и другие звезды и как этот параметр меняется в процессе эволюции космических тел.

Метод

Определять состав светил астрономы научились только в середине XIX века. Именно тогда в арсенале исследователей космоса появился спектральный анализ. Метод основан на свойстве атомов различных элементов излучать и поглощать свет на строго определенных резонансных частотах. Соответственно на спектре видны темные и светлые полосы, расположенные на местах, характерных для данного вещества.

Разные источники света можно отличить по рисунку из линий поглощения и излучения. успешно применяется для определения состава звезд. Его данные помогают исследователям понять очень многие процессы, происходящие внутри светил и недоступные непосредственному наблюдению.

Из чего состоит звезда на небе?

Солнце и другие светила — это огромные раскаленные шары газа. Звезды состоят преимущественно из водорода и гелия (73 и 25% соответственно). Еще примерно 2% вещества приходится на более тяжелые элементы: углерод, кислород, металлы и так далее. В целом известные сегодня планеты и звезды состоят из того же материала, что и вся Вселенная, однако различия в концентрации отдельных веществ, массе объектов и внутренних процессах порождают все многообразие существующих космических тел.

В случае светил основными критериями различий между их типами являются масса и те самые 2 % элементов, которые тяжелее гелия. Относительная концентрация последних называется в астрономии металличностью. Величина этого параметра помогает определить возраст звезды и ее будущее.

Внутреннее строение

«Начинка» звезд не разлетается по Галактике благодаря силам гравитационного сжатия. Они же способствуют распределению элементов во внутренней структуре светил определенным образом. В центр, к ядру, устремляются все металлы (в астрономии так называют любые элементы тяжелее гелия). Звезда образуется из облака пыли и газов. Если в нем присутствуют только гелий и водород, то первый образует ядро, а второй — оболочку. В тот момент, когда масса достигает критической отметки, начинается и звезда зажигается.

Три поколения звезд

Ядра, состоящие исключительно из гелия, имели светила первого поколения (также их называют звездами населения III). Они образовались через некоторое время после Большого взрыва и характеризовались впечатляющими размерами, сравнимыми с параметрами современных галактик. В процессе синтеза в их недрах из гелия постепенно образовывались другие элементы (металлы). Такие звезды заканчивали свою жизнь, взрываясь сверхновой. Элементы, синтезированные в них, стали строительным материалом для следующих светил. Для звезд второго поколения (население II) характерна низкая металличность. Самые молодые из известных сегодня светил относятся к третьему поколения. В их число входит и Солнце. Особенность таких светил — более высокий показатель металличности по сравнению с предшественниками. Более молодые звезды учеными обнаружены не были, однако можно с уверенностью утверждать, что для них будет характерен еще больший размер этого параметра.

Определяющий параметр

То, из чего состоят звезды, влияет на продолжительность их жизни. Металлы, опускающиеся к ядру, влияют на термоядерную реакцию. Чем их больше, тем раньше загорается звезда и тем меньше будет размер ее ядра при этом. Следствием последнего факта является более низкое количество энергии, излучаемое таким светилом в единицу времени. Как результат такие звезды живут значительно дольше. Их запаса топлива хватает на многие миллиарды лет. Например, по подсчетам ученых Солнце сейчас находится на середине своего жизненного цикла. Оно существует уже около 5 млрд лет и столько же еще впереди.

Солнце согласно теории образовалось из газопылевого облака, насыщенного металлами. Оно относится к звездам третьего поколения или, как их еще называют, населения I. Металлы в его ядре помимо более медленного горения топлива обеспечивают равномерное выделение тепла, что стало одним из условий зарождения жизни на нашей планете.

Эволюция звезд

Состав светил непостоянен. Посмотрим, из чего состоят звезды на разных этапах своей эволюции. Но для начала вспомним, какие этапы проходит светило от момента появления до завершения жизненного цикла.

В начале эволюции звезды располагаются на главной последовательности диаграммы Герцшпрунга-Рассела. В это время основным топливом в ядре является водород, из четырех атомов которого образуется один атом гелия. Большую часть жизни звезда проводит именно в таком состоянии. Следующая стадия эволюции — красный гигант. Его размеры значительно больше изначальных, а температура поверхности, наоборот, ниже. Звезды типа Солнца заканчивают свою жизнь на следующей стадии — они становятся белыми карликами. Более массивные светила превращаются в нейтронные звезды или черные дыры.

Первая стадия эволюции

Термоядерные процессы в недрах являются причиной перехода светила с одной стадии на другую. Горение водорода приводит к увеличению количества гелия, а значит, размеров ядра и площади реакции. В результате температура звезды возрастает. В реакцию начинает вступать водород, ранее в ней не задействованный. Происходит нарушение баланса между оболочкой и ядром. Как следствие первая начинает расширяться, а второе — сужаться. При этом сильно возрастает температура, что провоцирует горение гелия. Из него образуются более тяжелые элементы: углерод и кислород. Звезда сходит с главной последовательности и превращается в красного гиганта.

Следующая часть цикла

Представляет собой объект с сильно раздувшейся оболочкой. Когда Солнце дойдет до этой стадии, оно займет все пространство вплоть до орбиты Земли. О жизни на нашей планете в таких условиях, конечно, говорить не приходится. В недрах красного гиганта синтезируется углерод и кислород. При этом светило регулярно теряет массу из-за звездного ветра и постоянной пульсации.

Дальнейшие события различаются у объектов со средней и большой массой. Пульсации звезд первого типа приводят к тому, что их внешние оболочки сбрасываются и образуют В ядре заканчивается топливо, оно остывает и превращается в белого карлика.

Эволюция сверхмассивных светил

Водород, гелий, углерод и кислород — не все, из чего состоят звезды с огромными массами на последней стадии эволюции. На этапе красного гиганта ядра таких светил сжимаются с огромной силой. В условиях постоянно растущей температуры начинается горение углерода, а затем и его продуктов. Последовательно образуются кислород, кремний, железо. Дальше синтез элементов уже не идет, поскольку формирование из железа более тяжелых ядер с выделением энергии невозможно. Когда масса ядра достигает определенной величины, оно коллапсирует. На небе загорается сверхновая. Дальнейшая судьба объекта вновь зависит от его массы. На месте светила может образоваться нейтронная звезда или черная дыра.

После взрыва сверхновой синтезированные элементы разлетаются в окружающем пространстве. Из них, вполне возможно, через некоторое время сформируются новые звезды.

Примеры

Особое чувство возникает, когда получается не только опознать на небе знакомые светила, но и вспомнить, к какому классу они относятся, из чего состоят. Посмотрим, из каких звезд состоит Большая Медведица. В астеризм ковш входят семь светил. Самые яркие из них — это Алиот и Дубхе. Второе светило представляет собой систему из трех компонентов. В одном из них уже началось горение гелия. Два других, как и Алиот, располагаются на главной последовательности. К этой же части диаграммы Герцшпрунга-Рассела относятся и Фекда с Бенеташем, также составляющие ковш.

Самая яркая звезда ночного неба, Сириус, состоит из двух компонентов. Один из них относится к главной последовательности, второй — белый карлик. На ветви красных гигантов расположился Поллукс (альфа Близнецов) и Арктур (альфа Волопаса).

Из каких светил каждая галактика состоит? Из скольки звезд сформирована Вселенная? На подобные вопросы довольно трудно ответить точно. Несколько сотен миллиардов светил сосредоточены в одном только Млечном пути. Многие из них уже попали в объективы телескопов и регулярно обнаруживаются новые. То, из каких газов состоят звезды, нам тоже в целом известно, однако новые светила часто не соответствуют сложившемуся представлению. Космос таит еще немало тайн и многие объекты и их свойства ждут своих первооткрывателей.

Б лижайшая к нам звезда - это Солнце . О нем подробно рассказано на отдельной странице. Здесь же мы поговорим о звездах вообще, то есть в том числе и о тех, что можно видеть ночью.

Солнце мы тоже не станем исключать из повествования, наоборот, мы всегда будем сравнивать с ним другие звезды. До Солнца - 150 000 000 километров. Это в 270 000 раз ближе, чем до самой близкой, исключая само Солнце, звезды. Ясно, почему очень многое, что известно о звездах, мы знаем благодаря нашему дневному светилу.

Даже свет от ближайших звезд идет несколько лет, а сами звезды в самые мощные телескопы видны как точки. Впрочем, это не совсем так: звезды видны в виде крохотных дисков, но это связано с искажениями в телескопах, а не с увеличением. Звезд бесчисленное множество. Никто не в силах точно сказать, сколько существует звезд, тем более звезды рождаются и умирают. Можно лишь приближенно заявить, что в нашей Галактике около 150 000 000 000 звезд, а во Вселенной неизвестное число миллиардов галактик... А вот сколько звезд можно увидеть на небе невооруженным глазом известно точнее: около 4,5 тысяч. Более того, задавшись определенным пределом яркости звезд, близким по доступности глазу, можно это число назвать точнее, чуть ли не до единиц. Яркие звезды давно посчитаны и занесены в каталоги. Яркость звезды (или, как говорят, ее блеск) характеризуется звездной величиной, которую астрономы давно умеют определять. Так что же такое звезды?

Звезды - раскаленные газовые шары . Температура поверхности звезд различна. У некоторых звезд она может достигать 30 000 К, а у других - лишь 3 000К. Наше Солнце имеет поверхность с температурой около 6 000 К. Надо оговориться, что говоря о поверхности, мы имеем в виду лишь видимую поверхность, так как никакой твердой поверхности у газового шара быть не может.

Нормальные звезды гораздо больше планет, но главное - гораздо массивнее . Мы увидим, что есть во Вселенной странные звезды, имеющие типичные для планет размеры, но во много раз превосходящие последние по массе. Солнце в 750 раз массивнее всех остальных тел Солнечной системы. Подробнее о размерах планет, астероидов и комет и о них самих Вы сможете узнать на страницах, посвященных Солнечной Системе. Есть звезды, в сотни раз превышающие по размеру Солнце и во столько же раз уступающие ему в этом показателе. Однако, массы звезд меняются в гораздо более скромных пределах - от одной двенадцатой массы Солнца до 100 его масс. Может быть, есть и более тяжелые, но такие массивные звезды очень редки. Нетрудно догадаться, прочитав последние строки, что звезды очень сильно отличаются по плотности. Есть среди них такие, кубический сантиметр вещества которых перевешивает большой груженый океанский корабль. Вещество других звезд настолько разряжено, что его плотность меньше плотности того наилучшего вакуума, который достижим в земных лабораторных условиях. К разговору о размерах, массах и плотности звезд мы еще вернемся в дальнейшем.


Оказывается, И. Ньютон достаточно полно сформулировал их задолго до появления первых наблюдательных указаний на гравитационную неустойчивость межзвездной среды. Через 5 лет после того, как И. Ньютон опубликовал свой закон тяготения, его друг, преподобный Ричард Бентли, стоявший тогда во главе Тринити-колледжа в Кембридже, в письме к Ньютону спрашивал о том, не может ли быть описанная им сила тяготения причиной образования звезд (как нам кажется, столь точная формулировка проблемы делает Р. Бентли соавтором высказанного Ньютоном принципа гравитационной неустойчивости).


Рассмотрим на простом примере как можно сравнить размеры звезд одинаковой температуры, например Солнца и Капеллы. Эти звезды имеют одинаковые спектры, цвет и температуру, о светимость Капеллы в 120 раз превышает светимость Солнца. Так как при одинаковой температуре яркость единицы поверхности звезд тоже одинакова, то, значит, поверхность Капеллы больше, чем Солнца в 120 раз, а диаметр и радиус ее больше солнечных в корень квадратный из 120, что приближенно равно 11 раз. Определить размеры других звезд позволяет знание законов излучения.


Объект Hubble-X представляет собой сияющее газовое облако - одну из самых активных областей звездообразования в галактике NGC 6822. Наименование этой области взято из каталога объектов этой специфической галактики (X - это римское цифровое обозначение объекта). Галактика NGC 6822 находится в созвездии Стрельца на расстоянии около 1 630 000 световых лет от Земли и является одним из самых близких соседей Млечного Пути. Интенсивный процесс звездообразования в Hubble-X начался всего около 4 миллионов лет назад.

Вопрос о том, сколько звёзд на небе, волновал умы людей, как только первая звезда была замечена ими на небосклоне (причём задачу эту они решают до сих пор). Некоторые подсчёты астрономы всё-таки сделали, установив, что невооружённым взглядом на небе можно рассмотреть около 4,5 тыс. небесных светил, а в состав нашей галактики Млечный Путь входит около 150 млрд. звёзд. Учитывая, что Вселенная содержит несколько триллионов галактик, общее количество звёзд и созвездий, свет которых достигает земной поверхности, равняется септиллиону – и оценка эта лишь приблизительна.

Звезда — это огромных размеров газовый шар, излучающий свет и тепло (в этом состоит главное её отличие от планет, которые, будучи абсолютно тёмными телами, способны лишь отражать падающие на них световые лучи). Энергия порождает свет и тепло, возникшая в результате термоядерных реакций, происходящих внутри ядра: в отличие от планет, в состав которых входят как твёрдые, так и лёгкие элементы, небесные светила имеют в своем составе легкие частицы с незначительной примесью твёрдых веществ (например, Солнце почти на 74% состоит из водорода и на 25% – из гелия).

Температура небесных светил чрезвычайно раскалена: в результате большого количества термоядерных реакций температурные показатели звёздных поверхностей колеблются от 2 до 22 тыс. градусов Цельсия.

Поскольку вес даже самой маленькой звёздочки значительно превосходит массу самых крупных планет, небесные светила обладают достаточной гравитацией для того, чтобы удерживать вокруг себя все объекты меньших размеров, которые начинают крутиться вокруг них, образуя планетную систему (в нашем случае – Солнечную).

Вспыхивающие светила

Интересно, что в астрономии существует такое понятие, как «новые звёзды» – при этом речь идёт не о появлении новых небесных тел: на протяжении своего существования горячие небесные тела умеренной светимости периодически ярко вспыхивают, причём они настолько сильно начинают выделяться на небосводе, что люди в прежние времена считали, будто это рождаются новые звёзды.

В действительности анализ данных показал, что эти небесные светила существовали и раньше, но из-за вздутия поверхности (газообразной фотосферы) внезапно приобрели особую яркость, увеличив своё свечение в десятки тысяч раз, в результате чего создаётся впечатление, будто на небе появились новые звёзды. Возвращаясь к первоначальному уровню яркости, новые звёзды могут изменять свой блеск до 400 тыс. раз (при этом, если сама вспышка длится лишь несколько дней, их возврат к предыдущему состоянию нередко длится годами).

Жизнь небесных светил

Астрономы утверждают, что звёзды и созвездия образовываются до сих пор: согласно последним научным данным, лишь в нашей галактике ежегодно появляется около сорока новых небесных светил.

На первоначальном этапе своего образования новая звезда являет собой холодное разряженное облако межзвёздного газа, которое вращается вокруг своей галактики. Толчком для того чтобы в облаке начали происходить реакции, стимулирующие образование небесного светила, может послужить взорвавшаяся неподалёку сверхновая звезда (взрыв небесного тела в результате которого оно через некоторое время полностью разрушается).

Также вполне вероятными причинами может оказаться его столкновение с другим облаком или же на процесс могут повлиять столкнувшиеся друг с другом галактики, словом, всё, что способно воздействовать на газовое межзвёздное облако и заставить его сжиматься в шар под действием собственной гравитации.

Во время сжатия гравитационная энергия трансформируется в тепло в результате чего газовый шар чрезвычайно сильно нагревается. Когда температурные показатели внутри шара поднимаются до 15-20 К, начинают происходить термоядерные реакции в результате которых прекращается сжатие. Шар превращается в полноценное небесное светило, и на протяжении длительного времени внутри его ядра происходит преобразования водорода в гелий.



Когда запасы водорода заканчиваются, реакции останавливаются, формируется гелиевое ядро и структура небесного светила постепенно начинает изменяться: она становится более яркой, а ее внешние слои расширяются. После того как вес гелиевого ядра достигает максимальных показателей, небесное тело начинает уменьшаться, температура подниматься.

Когда температурные показатели достигают 100 млн. К, внутри ядра возобновляются термоядерные процессы, во время которых гелий преобразовывается в твёрдые металлы: гелий – углерод – кислород – кремний – железо (когда ядро становится железным, все реакции полностью прекращаются). В результате яркая звезда, увеличившись во сто крат, превращается в Красного гиганта.

Сколько именно проживёт то или иное светило, во многом зависит от размера: небесные тела малой величины сжигают запасы водорода очень медленно и вполне способны просуществовать миллиарды лет. Из-за недостаточной массы, в них не происходят реакций с участием гелия, и после остывания, они продолжают излучать небольшое количество электромагнитного спектра.


Жизнь светил средних параметров, среди которых и Солнце, составляет около 10 млрд. После этого периода их поверхностные слоя обычно превращаются в туманность с абсолютно безжизненным ядром внутри. Это ядро некоторое время спустя трансформируется в гелиевый белый карлик, диаметром ненамного больше Земли, затем темнеет и становится невидимым.

Если же небесное светило средних размеров было довольно крупное, оно сначала превращается в чёрную дыру, а затем на её месте вспыхивает сверхновая звезда.

А вот продолжительность существования сверхмассивных светил (напр., Полярная звезда) длится лишь несколько миллионов лет: в горячих и больших небесных телах водород сгорает чрезвычайно быстро. После того как огромное небесное тело заканчивает своё существование, на его месте происходит взрыв чрезвычайно огромной силы – и возникает сверхновая звезда.

Взрывы во Вселенной

Сверхновой звездой астрономы называют взрыв звезды, во время которого объект почти полностью разрушается. Через несколько лет объём сверхновой звезды увеличивается настолько, что она становится полупрозрачной и очень разреженной – и эти остатки можно увидеть ещё на протяжении нескольких тысяч лет, после чего она темнее и трансформируется в тело, полностью состоящее из нейтронов. Интересно, что явление это нередкое и в галактике происходит раз в тридцать лет.


Классификация

Большую часть видимых нам небесных светил относят к звёздам главной последовательности, то есть к небесным телам, внутри которых происходят термоядерные процессы, вызывающие преобразование водорода в гелий. Астрономы подразделяют их в зависимости от их цвета и температурных показателей на следующие классы звёзд:

  • Голубые, температура: 22 тыс. градусов Цельсия (класс О);
  • Бело-голубые, температура: 14 тыс. градусов Цельсия (класс В);
  • Белые, температура: 10 тыс. градусов Цельсия (класс А);
  • Бело-жёлтые, температура: 6,7 тыс. градусов Цельсия (класс F);
  • Жёлтые, температура: 5,5 тыс. градусов Цельсия (класс G);
  • Желто-оранжевые, температура: 3,8 тыс. градусов Цельсия (класс К);
  • Красные, температура: 1,8 тыс. градусов Цельсия (класс М).


Кроме светил главной последовательности, учёные выделяют следующие типы небесных светил:

  • Коричневые карлики – слишком малые небесные тела, чтобы внутри ядра мог начаться процесс преобразования водорода в гелий, поэтому они не являются полноценными звёздами. Сами по себе они чрезвычайно тусклые и учёные узнали об их существовании лишь по выделяемому ими инфракрасному излучению.
  • Красные гиганты и сверхгиганты – несмотря на свою низкую температуру (от 2,7 до 4,7 тыс. градусов Цельсия), это чрезвычайно яркая звезда, инфракрасное излучение которой достигает максимальных показателей.
  • Типа Вольфа-Райе – излучение отличается тем, что в нём присутствует ионизированный гелий, водород, углерод, кислород и азот. Это очень горячая и яркая звезда, являющаяся гелиевыми остатками огромных небесных светил, которые на определённом этапе развития скинули свою массу.
  • Типа Т Тельца – относятся к классу переменных звёзд, а также к таким классам, как F, G, K, M, . Имеют большой радиус, обладают высокой яркостью. Увидеть эти светила можно возле молекулярных облаков.
  • Яркие голубые переменные (второе название – переменные типа S Золотой Рыбы) – чрезвычайно яркие пульсирующие гипергиганты, чья яркость может превышать яркость Солнца в миллион раз и быть тяжелее в 150 раз. Считается, что небесное светило этого типа – самая яркая звезда во Вселенной (встречается, правда, очень редко).
  • Белые карлики – умирающие небесные светила, в которые преобразуются светила средних размеров;
  • Нейтронные звезды – также относятся к умирающим небесным телам, которые после гибели образуют более крупные светила, чем Солнце. Ядро в них уменьшается до тех пор, пока не преобразуется в нейтроны.


Путеводная нить моряков

Одной из наиболее известных небесных светил нашего небосклона является Полярная звезда из созвездия Малая Медведица, почти никогда не меняющая своего положения на небосклоне относительно определённой широты. В любое время года она указывает на север, из-за чего получила второе своё название – Северная звезда.

Естественно, легенда о том, что Полярная звезда не двигается, далека от истины: как и любое другое небесное тело, она совершает обороты. Северная звезда уникальна тем, что она ближе всех находится к северному полюсу – на расстоянии около одного градуса. А потому из-за угла наклона Полярная звезда кажется неподвижной, и вот уже на протяжении не одного тысячелетия служит великолепным ориентиром для моряков, пастухов, путешественников.

Надо заметить, что Северная звезда сместится, если наблюдатель изменит своё местоположение, так как полярная звезда изменяет свою высоту в зависимости от географической широты. Эта особенность давала возможность морякам, при измерении угла наклона между горизонтом и Полярной звездой, определять своё месторасположение.


В действительности Полярная звезда состоит из трёх объектов: недалеко от неё расположены две звезды-спутника, которые связаны с ней силами взаимного притяжения. При этом сама Полярная звезда относится к гигантам: её радиус почти в 50 раз больше радиуса Солнца, а светимость превышает в 2,5 тыс. раз. Это значит, что Северная звезда будет иметь крайне непродолжительную жизнь, а потому, несмотря на относительно молодой возраст (не более 70 млн. лет), Полярная звезда считается старой.

Интересно, что в списке самых ярких звёзд, Северная звезда находится на 46 месте – именно поэтому в городе на ночном небе, освещенном уличными фонарями, Полярная звезда практически никогда не видна.

Падающие светила

Порой, посмотрев на небо, можно увидеть, как по небу проносится упавшая звезда, яркая светящаяся точка – иногда одна, иногда несколько. Выглядит это так, будто звезда упала, а на ум сразу приходит легенда о том, что когда на глаза попадается упавшая звезда, нужно загадать желание – и оно непременно сбудется.

Мало кто задумывается, что в действительности – это метеориты, летящие к нашей планете из космоса, которые столкнувшись с атмосферой Земли, оказались настолько раскалены, что стали гореть и походить на яркую летящую звёздочку, получившую понятие «упавшая звезда». Как ни странно, явление это нередкое: если следить за небом постоянно, увидеть, как звезда упала, можно практически каждую ночь – на протяжении суток в атмосфере нашей планеты сгорает около сотни миллионов метеоров и около ста тонн очень мелких пылевых частиц.

В некоторые годы упавшая звезда показывается на небосклоне намного чаще, чем обычно, а если она при этом не одна, земляне имеют возможность наблюдать за метеорным потоком – несмотря на то, что кажется, будто звезда упала на поверхность нашей планеты, почти все небесные тела потока сгорают в атмосфере.

Появляются они в таком количестве, когда комета приближается к Солнцу, нагревается и частично разрушается, отдавая в космос определенное количество камней. Если проследить траекторию метеоритов, создаётся обманчивое впечатление, будто все они летят из одной точки: движутся они по параллельным траекториям и каждая упавшая звезда имеет свою.

Интересно, что многие из этих метеорных потоков возникают в один и тот же период года и земляне имеют возможность увидеть падение звезды довольно продолжительное время – от нескольких часов, до нескольких недель.

И только метеориты крупных размеров, обладающие достаточной массой, способны достигнуть земной поверхности, и если в это время такая звезда упала недалеко от населённого пункта, например, это случилось несколько лет назад в Челябинске, то это может вызвать чрезвычайно разрушительные последствия. Иногда упавшая звезда может быть не одна, что именуют метеоритным дождем.