Две двойные связи название. Диены — номенклатура, получение, характерные химические свойства. Примеры решения задач

Алкадиены входят в класс углеводородов и имеют две двойные связи. Какие физические и химические свойства алкадиенов известны, и в чем особенность этих соединений?

Общая характеристика алкадиенов

Алкадиены – это непредельные углеводороды с двумя двойными связями углерод-углерод. Когда в алкодиенах двойные связи находятся между двумя или более атомами углерода, то эти связи считаются изолированными.

Рис. 1. Алкадиены структурная формула.

Изолированные алкодиены по своим химическим свойствам ведут себя также, как и алкены. Только, в отличие от алкенов, в реакцию вступают две связи, а не одна.

Диены могут находится в жидком или газообразном состоянии. Низшие диены – бесцветные жидкости, а бутадиен и аллен – газы. Бутадиен является исходным веществом для получения каучука.

Рис. 2. Бутадиен.

Диены можно разделить на три вида:

  • сопряженные, в которых двойные связи разделены одинарными;
  • аллены с двойными связями;
  • диены с изолированными связями, в которых двойные связи разделяются несколькими одинарными.

Химические свойства алкадиенов

Химические свойства соединений зависят от двойных связей. Для алкадиенов характерна реакция присоединения. Если в диеновом углеводороде две двойные связи расположены через одну простую связь (сопряженное положение), то происходит дополнительное перекрывание электронной плотности p-облаков двух п-связей через простую связь. Этот электронный эффект называется эффектом сопряжения, или мезомерным эффектом. В результате происходит выравнивание связей по длине и энергии, образуется единая электронная система с делокализацией п-связей. Молекула может реагировать по двум направлениям, при этом выход продуктов зависит от устойчивости карбкатионов.

Если положение двойных связей в алкадиене не является сопряженным, то реакция вначале идет по любой из двух связей. При добавлении реагента идет последовательное присоединение по другой связи, с образованием предельного соединения.

Реакция присоединения может протекать в 2х направлениях: 1,4 и 1,2 - присоединение. Например,

CH 2 =CH-CH=CH 2 +Br 2 =CH 2 =CH+CHBr=CH 2 Br

CH 2 =CH-CH=CH 2 +Br 2 =BrCH 2 -CH=CH-CH 2 Br

Также алкадиены способны к полимеризации:

nCH 2 =CH-CH=CH 2 = (-CH 2 -CH=CH-CH 2 -)n.

Полимеризация – это образование молекулы большой молекулярной массы за счет соединения множества молекул, имеющих кратную связь.

3.1. - Ненасыщенные неразветвленные углеводороды с одной двойной связью называют, заменяя окончание -ан -ен. Наличие двух или более двойных связей обозначают окончаниями -адиен, -атриен и т. д. Родовые названия углеводородов (разветвленных и неразветвленных) с одной, двумя, тремя и т. д. двойными связами - алкены, алкадиены, алкатриены и т. д. Цепи нумеруют так, чтобы положения двойных связей обозначались наиболее низкими номерами. Примеры :



Сохраняются следующие несистематические названия:



3.2. - Ненасыщенные неразветвленные ациклические углеводороды с одной тройной связью называют, заменяя окончание -ан в названии соответствующего насыщенного углеводорода окончанием -ин. Наличие двух или более тройных связей обозначают окончаниями -адиин, -атриин и т. д. Родовые названия углеводородов (как разветвленных, так и неразветвленных) с одной, двумя, тремя и т. д. тройными связями - алкины, алкадиины, алкатриины и т. д. Цепь нумеруют так, чтобы положения тройных связей обозначались наиболее низкими номерами.

Название ацетилен для НС≡СН сохраняется.

3.3. - Ненасыщенные неразветвленные ациклические углеводороды, имеющие как двойные, так и тройные связи, называют, заменяя в названии соответствующего насыщенного углеводорода окончание -ан окончаниями -енин, -адиенин, -атриенин, -ендиин и т. д. Двойные и тройные связи должны получить возможно более низкие номера, даже если при этом -ин получит меньший номер чем -ен. Если же при нумерации возможен выбор, наименьшими номерами следует обозначить двойные связи.

Примеры :



3.4. - Ненасыщенные разветвленные ациклические углеводороды рассматривают как производные неразветвленных углеводородов, содержащих максимальное число двойных и тройных связей. Если при выборе цепи с максимальным числом ненасыщенных связей имеется несколько возможностей, - (1) выбирают цепь с наибольшим числом атомов углерода; (2) если в нескольких цепях число атомов углерода одинаково, выбирают цепь с максимальным числом двойных связей. В остальном поступают так же, как при наименовании насыщенных разветвленных ациклических углеводородов.

Цепь нумеруют таким образом, чтобы положение двойных и тройных связей было обозначено наименьшими номерами в соответствии с правилом А-3.3.

Примеры :





Название изопрен сохраняется только для незамещенного соединения.

Алкадиены - непредельные углеводороды, в состав которых входят две двойные связи. Общая формула алкадиенов - C n H 2n-2 .

Если двойные связи находятся в углеродной цепи между двумя или боле атомов углерода , то такие связи называются изолированными . Химические свойства таких диенов не отличаются от алкенов , только в реакцию вступают 2 связи, а не одна.

Если же двойные связь разделены только одной σ - связью, то это - сопряженная связь:

Если же диен выглядит так: С=С=С , то такая связь является кумулированной, а диен называется - алленом .

Строение алкадиенов.

π -электронные облака двойных связей перекрываются между собой, образуя единое π -облако. В сопряженной системе электроны делокализованы по всем атомам углерода:

Чем длиннее молекула, тем она более устойчива.

Изомерия алкадиенов.

Для диенов характерна изомерия углеродного скелета, изомерия положения двойных связей и пространственная изомерия .

Физические свойства алкадиенов.

Бутадиен-1,3 - легко сжижающийся газ с неприятным запахом. А изопрен - жидкость.

Получение диенов.

1. Дегидрирование алканов:

2. Реакция Лебедева (одновременное дегидрирование и дегидратация):

Химические свойства алкадиенов.

Химические свойства алкадиенов обусловлены наличием двойных связей. Реакция присоединения может протекать в 2х направлениях: 1,4 и 1,2 - присоединение. Например,

По двойной связи находятся в состоянии sp 2 -гибридизации.

Диеновые углеводороды в зависимости от расположения двойных связей делятся на:

Углеводороды с кумулированными двойными связями:

Углеводороды с сопряженными двойными связями:

СН 2 = СН - СН = СН 2 ;

Углеводороды с изолированными двойными связями:

СН 2 = СН - СН 2 - СН = СН 2 .

Номенклатура. Существуют тривиальные названия диеновых углеводородов (ален, дивинил, изопрен) и систематическая номенклатура. По систематической номенклатуре соблюдаются те же правила, что и в названии алкенов, только окончание «ен» заменяется на «-диен»:

Особый интерес среди диеновых углеводородов представляют углеводороды с сопряженными двойными связями. Наибольшее практическое значение имеют дивинил, или 1, 3 - бутадиен (легко сжижающийся газ, т. кип = - 4,5 °C), и изопрен , или 2 - метил - 1, 3 - бутадиен (жидкость с т. кип = 34 °С). По химическим свойствам диеновые углеводороды подобны алкенам. Они легко вступают в реакции присоединения и окисления. Однако сопряженные диены отличаются некоторыми особенностями, которые обусловлены делокализацией (рассредоточением) p-электронов. Молекула 1, 3 - бутадиена СН 2 = СН - СН = СН 2 содержит четыре атома углерода, которые находятся в состоянии sp 2 - гибридизации, и имеет плоское строение.

p-электроны двойных связей образуют единое p-электронное облако (сопряженную систему) и делокализованы между всеми атомами углерода.

Порядок связей между атомами углерода имеет промежуточное значение между одинарной и двойной, т.е. нет чисто одинарной и чисто двойных связей.

Получение диеновых углеводородов. Общие способы получения диенов аналогичны способам получения алкенов.

1. Дегидрирование алканов.

Этим путем получают в промышленности дивинил из бутана:

Каталитическим дегидрированием изопентана (2-метилбутана) получают изопрен:

2. Синтез дивинила по Лебедеву:

3. Дегидратация гликолей (двухатомных спиртов, или алкандиолов):

4. Действие спиртового раствора щелочи на дигалогеналканы:

5. Получение из отходов бродильных производств:

Химические свойства. Типичными реакциями диеновых углеводородов, так же как и алкенов, являются реакции электрофильного присоединения и полимеризации .

Реакции электрофильного присоединения (Аd Е). Электронные особенности сопряженных диенов приводят к тому, что реакции Аd E протекают в 1, 2- и 1, 4 - положениях:


1. Галогенирование :

Механизм реакции:

В зависимости от изменения условий реакции мы можем регулировать выходы продуктов 1, 2- и 1, 4 - присоединения.

Бромирование диеновых углеводородов проходит аналогично:

1, 2 - присоединение:

1, 4 - присоединение:

При избытке брома присоединяется еще одна его молекула по месту оставшейся двойной связи с образованием 1, 2, 3, 4 - тетрабромбутана.

2. Гидрогалогенирование. Реакция также протекает в 1, 2- и 1, 4 - положениях:

3. Гидрирование. При гидрировании 1, 3 - бутадиена преимущественно получается 2 - бутен, т.е. происходит 1, 4 - присоединение. При этом двойные связи разрываются, к крайним атомам углерода С 1 и С 4 присоединяются атомы водорода, а свободные валентности образуют двойную связь между атомами С 2 и С 3:

В присутствии катализатора Ni получается продукт полного гидрирования:

Присоединение галогенов, галогенводородов, воды и других полярных реагентов происходит, как уже сказано, по механизму электрофильного присоединения. К реакциям присоединения можно также отнести реакции димеризации , характерные для диенов. Подобные конденсации получили название диеновых синтезов.

4. Диеновый синтез (реакция Дильса-Альдера). В органическом синтезе широко применяется реакция присоединения к сопряженным диенам соединений, содержащих кратные связи (так называемых диенофилов). Реакция идет как 1, 4 - присоединение и приводит к образованию циклических продуктов:

Реакции полимеризации. Диеновые углеводороды с сопряженными связями способны полимеризоваться с образованием каучуков. Важнейшими мономерами для получения каучуков являются дивинил, изопрен и 2, 3 - диметилбутадиен.

До 1950 года полимеризацию диенов проводили в условиях радикального механизма. При этом получались атактические структуры, далекие от свойств натурального каучука.

Использование катализаторов Цинглера-Натта позволило получать каучук с упорядоченной структурой:

Основу полимерной структуры натурального каучука составляет цис-полиизопрен. Аналог натурального каучука был получен синтетически с использованием катализаторов Цинглера-Натта:

Транс-полиизопрен называется гуттаперчей:

транс-полиизопрен (гуттаперча)

Для практического использования каучуки превращают в резину. Резина - это вулканизованный каучук, где в качестве наполнителя используется сажа. Суть процесса вулканизации заключается в том, что нагревание смеси каучука и серы приводит к образованию трехмерной сетчатой структуры из линейных макромолекул каучука, придавая ему повышенную прочность. Атомы серы присоединяются по двойным связям макромолекул и образуют между ними сшивающие дисульфидные мостики:

Сетчатый полимер более прочен и проявляет повышенную упругость - высокоэластичность (способность к высоким обратимым деформациям). В зависимости от количества сшивающего агента (серы) можно получать сетки с различной частотой сшивки. Предельно сшитый натуральный каучук - эбонит - не обладает эластичностью и представляет собой твердый материал. Вулканизация устраняет липкость полимеров, повышает эластичность. Резина используется для изготовления шин.

Большое значение имеет сополимеризация диеновых углеводородов с другими мономерами - стиролом, акрилонитрилом:

Каталитически возбужденный водород присоединя­ется в 1,2- и 1,4-положения:

4.4.2. Галогенирование

Галогены также способны присо­единяться к сопряженным системам в 1,2- и 1,4-положения, причем ко­личество 1,4-продукта зависит от строения диенового углеводорода, при­роды галогена и условий реакции. Выход продукта 1,4-присоединения возрастает при повышении температуры (до известного предела) и при переходе от хлора к иоду:

Как и в случае этиленовых соединений, присоединение может происхо­дить как по ионному, так и по радикальному механизму.

При ионном механизме присоединения, например хлора, первоначаль­но возникающий π-комплекс (I) быстро превращается в сопряженный карбений-хлорониевый ион с положительным зарядом на С 2 и С 4 , кото­рый можно изобразить двумя граничными формулами (II) или одной мезомерной формулой (III). Этот ион присоединяет далее анион хлора в положения 2 и 4 с образованием продуктов 1,2- и 1,4-присоединения. По­следние, в свою очередь, могут изомеризоваться в подходящих условиях один в другой до достижения состояния равновесия через тот же самый промежуточный карбениевый ион:

Если в условиях реакции присоединения система близка к состоянию равновесия, содержание каждого изомера в продуктах реакции зависит от положения равновесия. Обычно 1,4-продукт энергетически более выго­ден и потому преобладает.

Наоборот, когда система далека от состояния равновесия, может обра­зоваться преимущественно 1,2-продукт, если энергия активации в реак­ции его образования ниже, чем в реакции образования 1,4-продукта. Так, в случае присоединения хлора к дивинилу получается примерно равное количество 1,2- и 1,4-дихлорбутенов, в случае же присоединения брома получается около 66% 1,4-продукта, так как связь С-Вг менее прочна, чем связь С-С1, и равновесие для бромида достигается легче. Повыше­ние температуры приближает систему к равновесному состоянию.

При радикальном присоединении атома галогена образуется сопря­женный радикал, который также обладает двойственной реакционной способностью, однако образуется преимущественно 1,4-аддукт:

4.4.3. Гидрогалогенирование

В реакциях присоединения галогеноводо-родов действуют те же закономерности:

4.4.4. Гипогалогенирование

Гипогалогенные кислоты и их эфиры присое­диняются преимущественно в 1,2-положения. Здесь система в момент ре­акции особенно далека от состояния равновесия (связь С–О значительно прочнее связей С–Hlg), а энергия активации в реакции образования 1,2-продукта ниже, чем в реакции образования 1,4-продукта:

4.4.5. Димеризация диенов

При нагревании молекулы диеновых углеводородов способны присоединяться друг к другу таким образом, что одна из них реа­гирует в 1,2-, а другая в 1,4-положениях. Одновременно в небольших ко­личествах получается также продукт присоединения обеих молекул в 1,4-положение:

В такую реакцию димеризации могут вступать и молекулы различных диенов:

4.4.6. Диеновый синтез

Особенно легко такие реакции идут в том случае, когда одна из реагирующих молекул имеет активированную двойную связь, электрофильность которой повышена благодаря сопряжению с электроотрицательными атомами. Подобные конденсации получили на­звание диенового синтеза или реакции Дильса -Альдера:

Эта реакция широко используется для качественного и количественно­го определения диеновых углеводородов, а также для синтеза различных соединений с шестичленными циклами.

Реакции диенового синтеза и димеризации алкадиенов идут через цик­лическое переходное состояние с одновременным или почти одновремен­ным образованием обеих новых связей, т. е. как перециклические про­цессы.

Возможность и условия протекания подобного рода реакций циклизации, проходящих без промежуточного образования радикалов или ионов, подчиняются закономерностям, нося­щим название правил Вудворта -Гофмана. Согласно этим правилам, для того чтобы замкнулся цикл, орбитали, образующие новые связи, должны иметь возможность перекры­ться с образованием связывающих орбиталей, т. е. должны быть направлены друг к другу сегментами одинакового знака.

Если для этого не требуется возбуждение какой-либо из реагирующих молекул (переход электронов на более высокий уровень с изменением знака сегментов), то процесс разрешен по симметрии как термический, т. е. реакция будет идти или ускоряться при нагревании. Если для указанной выше ориентации орбиталей необходимо перевести электроны одной из моле­кул на более высокий уровень (на разрыхляющую орбиталь), реакция разрешена по симмет­рии только как фотохимический процесс.

Разумеется, такие реакции могут идти и по радикальному или каталити­ческому механизмам с образованием промежуточных частиц. К таким процессам правила Вудворта–Гофмана отношения не имеют.