Решение системы уравнений в зависимости от параметра. Число решений системы двух линейных уравнений с двумя переменными. Элементарными преобразованиями матрицы. Метод крамера. Определение вектора

в) (хе+у"=1, г) (х"+у"=2а - 1,

(ху=а; (ху=а - 1?

9.198. Найдите число решений системы уравнений ((х(+)у~=!,

в зависимости от параметра а.

9.199. Сколько решений в зависимости от а имеет система уравнений:

а) (х"+у"=9, б) (х"+у"+!Ох=0,

(~х~ =у - а; (у=~х - а~?

9.200. При каких значениях параметра а система уравнений

имеет три решения? Найдите зти решения.

9.201. При каких значениях параметра р система уравнений

(ру+х) (х - р УЗ)=О

имеет три решения?

9.202. При каких значениях параметра Ь система уравнений

а) 1 ~х~ +4)у~ = Ь, б) 1 х~ +2 ~у(= 1, в) (~у! +х =4

! ~у!+хг=1 ! ~у!+хг=Ь (х +У =Ь

имеет четыре различных решения?

9.208. При каких значениях параметра с система уравнений

имеет восемь различных решений?

9.204. Решите систему уравнений

где а)О, и докажите, что если а - целое число, то для

каждого решения (х; у) данной системы число 1+ху является квадратом целого числа.

9.205. При каких значениях параметра а система уравнений

х"+ у"+ 2ху - бх - бу+ 10 - а = О,

х"+ у" - 2ху - 2х+ 2У+ а = О

имеет хотя бы одно решение?

Решите систему при найденных значениях а.

9.206. Найдите все значения параметра а, при которых система

уравнений (х"+(у - 2)"=1, имеет хотя бы одно решение.

9.207. Найдите все значения параметра а, при которых окружности х" +д" = 1 и (х - а)» +д" =4 касаются.

9.208. Найдите все значения параметра а (а> О), при которых окружности х"+д"=1 и (х - 3)"+(д - 4)"=а" касаются.

Найдите координаты точки касания.

9.209. Найдите все значения а (а>0), при которых окружность

х"+д"=а" касается прямой Зх+4д=12. Найдите координаты точки касания.

Д" - 2х+ 4д = 21. Найдите координаты точек пересечения

прямой и окружности.

9.211. При каком значении параметра а прямая эд=х+1 будет

проходить через центр окружности (х - 1) +(д - а)"=8?

Найдите координаты точек пересечения прямой и окружности.

9 212. Известно, что прямая д= 12х - 9 и парабола д =ах" имеют

только одну общую точку. Найдите координаты этой точки.

9.213. При каких значениях Ь и г (Ь>0, г>0) окружность

(х - 1)"+(д - Ь)"=г" будет касаться прямых д=0 и д= - х?

Найдите координаты точек касания.

9.214. Изобразите на координатной плоскости множество точек с

координатами (а; Ь) таких, что система уравнений

имеет хотя бы одно решение.

9.215. При каких значениях параметра а система уравнений

а (х"+ 1) = д - ~ х ~ + 1,

имеет единственное решение?

9 1О. ТЕКСТОВЫЕ ЗАДАЧИ

Текстовые задачи, как правило, решают по следующей схеме: выбирают неизвестные; составляют уравнение или систему уравнений, а в некоторых задачах - неравенство или систему неравенств; решают полученную систему (иногда достаточно найти из системы какую-то комбинацию неизвестных, а не решать ее в обычном смысле).

Теорема. Система линейных уравнений совместна тогда только тогда, когда ранг расширенной матрицы равен рангу самой матрицы системы.

Системы линейных уравнений

Совместные r(A)=r() несовместные r(A)≠r().

Таким образом, системы линейных уравнений имеют либо бесконечное множество решений, либо одно решение, либо не имеют решений совсем.

Конец работы -

Эта тема принадлежит разделу:

Элементарными преобразованиями матрицы. Метод крамера. Определение вектора

Два элемента перестановки образуют инверсию если в записи перестановки больший элемент предшествует меньшему.. существует n различных перестановок n ой степени из n чисел докажем эту.. перестановка называется ч тной если общее количество инверсий есть ч тное число и соответственно неч тной если..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Теорема Кронекера-Капелли
Рассмотрим систему линейных уравнений с n неизвестными: Составим матрицу и расширенную матрицу

Понятие однородной системы линейных уравнений
Система линейных уравнений, все свободные члены в которых равны 0, т.е. система вида называется однородн

Свойство решений однородной СЛУ
Линейная комбинация решений однородной системы уравнений сама является решением этой системы. x=и y=

Связь между решениями однородных и неоднородных систем линейных уравнений
Рассмотрим обе системы: I и

Аксиоматический подход к определению линейного пространства
Ранее было введено понятие n-мерного векторного пространства как совокупности упорядоченных систем n-действительных чисел, для которых были введены операции сложения и умножения на действительное ч

Следствия из аксиом
1. Единственность нулевого вектора 2. Единственность противоположного вектора

Доказательство следствий
1. Предположим, что. -нулево

Базис. Размерность. Координаты
Определение 1. Базисом линейного пространства L называется система элементов принадлежащих L, удовлетворяющая двум условиям: 1) система

Если система

a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 ,

a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2 ,

a m1 x 1 + a m1 x 2 +... + a mn x n = b m . (5.1)

оказалась совместной, т. е. матрицы системы A и матрица расширенной системы (со столбцом свободных членов) A|b имеют один и тот же ранг, то могут представиться две возможности - a) r = n; б) r < n:

а) если r = n, то имеем n независимых уравнений с n неизвестными, причем определитель D этой системы отличен от нуля. Такая система имеет единственное решение, получаемое по ;

б) если r < n, то число независимых уравнений меньше числа неизвестных.

Перенесем лишние неизвестные x r+1 , x r+2 ,..., x n , которые принято называть свободными, в правые части; наша система линейных уравнений примет вид:

a 11 x 1 + a 12 x 2 +... + a 1r x r = b 1 - a 1 , r+1 x r+1 -... - a 1n x n,

a 21 x 1 + a 22 x 2 +... + a 2r x r = b 2 - a 2 , r+1 x r+1 -... - a 2n x n,

... ... ... ... ... ... ... ... ... ...

a r1 x 1 + a r2 x 2 +... + a rr x r = b r - a r , r+1 x r+1 -... - a rn x n.

Ее можно решить относительно x 1 , x 2 ,..., x r , так как определитель этой системы (r-го порядка) отличен от нуля. Придавая свободным неизвестным произвольные числовые значения, получим по формулам Крамера соответствующие числовые значения для x 1 , x 2 ,..., x r. Таким образом, при r < n имеем бесчисленное множество решений.

Система (5.1) называется однородной , если все b i = 0, т. е. она имеет вид:

a 11 x 1 + a 12 x 2 +... + a 1n x n = 0, a 21 x 1 + a 22 x 2 +... + a 2n x n = 0, (5.5) ... ... ... ... ... ... a m1 x 1 + a m1 x 2 +... + a mn x n = 0.

Из теоремы Кронекера-Капелли следует, что она всегда совместна, так как добавление столбца из нулей не может повысить ранга матрицы. Это, впрочем, видно и непосредственно - система (5.5) заведомо обладает нулевым, или тривиальным, решением x 1 = x 2 =... = x n = 0. Пусть матрица А системы (5.5) имеет ранг r. Если r = n, то нулевое решение будет единственным решением системы (5.5); при r < n система обладает решениями, отличными от нулевого, и для их разыскания применяют тот же прием, как и в случае произвольной системы уравнений. Всякий ненулевой вектор - столбец X= (x 1 , x 2 ,..., x n) T называется собственным вектором линейного преобразования (квадратной матрицы A), если найдется такое число λ, что будет выполняться равенство

Число λ называется собственным значением линейного преобразования (матрицы A), соответствующим вектору X. Матрица A имеет порядок n. В математической экономике большую роль играют так называемые продуктивные матрицы . Доказано, что матрица A является продуктивной тогда и только тогда, когда все собственные значения матрицы A по модулю меньше единицы. Для нахождения собственных значений матрицы A перепишем равенство AX = λX в виде (A - λE)X = 0, где E- единичная матрица n-го порядка или в координатной форме:

(a 11 -λ)x 1 + a 12 x 2 +... + a 1n x n =0,

a 21 x 1 + (a 22 -λ)x 2 +... + a 2n x n = 0, (5.6)

... ... ... ... ... ... ... ... ... a n1 x 1 + a n2 x 2 +... + (a nn -λ)x n = 0.

Получили систему линейных однородных уравнений, которая имеет ненулевые решения тогда и только тогда, когда определитель этой системы равен нулю, т.е.

Получили уравнение n-ой степени относительно неизвестной λ, которое называется характеристическим уравнением матрицы A, многочлен называется характеристическим многочленом матрицы A, а его корни - характеристическими числами, или собственными значениями, матрицы A. Для нахождения собственных матрицы A в векторное уравнение (A - λE)X = 0 или в соответствующую систему однородных уравнений (5.6) нужно подставить найденные значения λ и решать обычным образом. Пример 2.16 . Исследовать систему уравнений и решить ее, если она совместна.

x 1 + x 2 - 2x 3 - x 4 + x 5 =1, 3x 1 - x 2 + x 3 + 4x 4 + 3x 5 =4, x 1 + 5x 2 - 9x 3 - 8x 4 + x 5 =0.

Решение. Будем находить ранги матриц A и A|b методом элементарных преобразований, приводя одновременно систему к ступенчатому виду:

Очевидно, что r(A) = r(A|b) = 2. Исходная система равносильна следующей, приведенной к ступенчатому виду:

x 1 + x 2 - 2x 3 - x 4 + x 5 = 1, - 4x 2 + 7x 3 + 7x 4 = 1.

Поскольку определитель при неизвестных x 1 и x 2 отличен от нуля, то их можно принять в качестве главных и переписать систему в виде:

x 1 + x 2 = 2x 3 + x 4 - x 5 + 1, - 4x 2 = - 7x 3 - 7x 4 + 1,

Откуда x 2 = 7/4 x 3 + 7/4 x 4 -1/4, x 1 = 1/4 x 3 -3/4 x 4 - x 5 + 5/4 - общее решение системы, имеющей бесчисленное множество решений. Придавая свободным неизвестным x 3 , x 4 , x 5 конкретные числовые значения, будем получать частные решения. Например, при x 3 = x 4 = x 5 = 0 x 1 = 5/4, x 2 = - 1/4. Вектор C(5/4, - 1/4, 0, 0, 0) является частным решением данной системы. Пример 2.17. Исследовать систему уравнений и найти общее решение в зависимости от значения параметра а .

2x 1 - x 2 + x 3 + x 4 = 1, x 1 + 2x 2 - x 3 + 4x 4 = 2, x 1 + 7x 2 - 4x 3 + 11x 4 = a.

Решение. Данной системе соответствует матрица . Имеем А ~

следовательно, исходная система равносильна такой:

x 1 + 2x 2 - x 3 + 4x 4 = 2,

5x 2 - 3x 3 + 7x 4 = a-2,

Отсюда видно, что система совместна только при a=5. Общее решение в этом случае имеет вид:

x 2 = 3/5 + 3/5x 3 - 7/5x 4 , x 1 = 4/5 - 1/5x 3 - 6/5x 4.

Пример 2.18. Выяснить, будет ли линейно зависимой система векторов:

a 1 =(1, 1, 4, 2),

a 2 = (1, -1, -2, 4),

a 3 = (0, 2, 6, -2),

a 4 =(-3, -1, 3, 4),

a 5 =(-1, 0, - 4, -7),

Решение. Система векторов является линейно зависимой, если найдутся такие числа x 1 , x 2 , x 3 , x 4 , x 5 , из которых хотя бы одно отлично от нуля
(см. п. 1. разд. I), что выполняется векторное равенство:

x 1 a 1 + x 2 a 2 + x 3 a 3 + x 4 a 4 + x 5 a 5 = 0.

В координатной записи оно равносильно системе уравнений:

x 1 + x 2 - 3x 4 - x 5 = 0, x 1 - x 2 + 2x 3 - x 4 = 0, 4x 1 - 2x 2 + 6x 3 +3x 4 - 4x 5 = 0, 2x 1 + 4x 2 - 2x 3 + 4x 4 - 7x 5 = 0.

Итак, получили систему линейных однородных уравнений. Решаем ее методом исключения неизвестных:

Система приведена к ступенчатому виду, равен 3, значит, однородная система уравнений имеет решения, отличные от нулевого (r < n). Определитель при неизвестных x 1 , x 2 , x 4 отличен от нуля, поэтому их можно выбрать в качестве главных и переписать систему в виде:

x 1 + x 2 - 3x 4 = x 5 , -2x 2 + 2x 4 = -2x 3 - x 5 , - 3x 4 = - x 5 .

Имеем: x 4 = 1/3 x 5 , x 2 = 5/6x 5 +x 3 , x 1 = 7/6 x 5 -x 3 . Система имеет бесчисленное множество решений; если свободные неизвестные x 3 и x 5 не равны нулю одновременно, то и главные неизвестные отличны от нуля. Следовательно, векторное уравнение

x 1 a 1 + x 2 a 2 + x 3 a 3 + x 4 a 4 + x 5 a 5 = 0

Исследовать систему линейных агебраических уравнений (СЛАУ) на совместность означает выяснить, есть у этой системы решения, или же их нет. Ну и если решения есть, то указать сколько их.

Нам понадобятся сведения из темы "Система линейных алгебраических уравнений. Основные термины. Матричная форма записи" . В частности, нужны такие понятия, как матрица системы и расширенная матрица системы , поскольку именно на них опирается формулировка теоремы Кронекера-Капелли. Как обычно, матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы - буквой $\widetilde{A}$.

Теорема Кронекера-Капелли

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. $\rang A=\rang\widetilde{A}$.

Напомню, что система называется совместной, если она имеет хоть одно решение. Теорема Кронекера-Капелли говорит вот о чём: если $\rang A=\rang\widetilde{A}$, то решение есть; если $\rang A\neq\rang\widetilde{A}$, то данная СЛАУ не имеет решений (несовместна). Ответ на вопрос о количестве этих решений даёт следствие из теоремы Кронекера-Капелли. В формулировке следствия использована буква $n$, которая равна количеству переменных заданной СЛАУ.

Следствие из теоремы Кронекера-Капелли

  1. Если $\rang A\neq\rang\widetilde{A}$, то СЛАУ несовместна (не имеет решений).
  2. Если $\rang A=\rang\widetilde{A} < n$, то СЛАУ является неопределённой (имеет бесконечное количество решений).
  3. Если $\rang A=\rang\widetilde{A} = n$, то СЛАУ является определённой (имеет ровно одно решение).

Заметьте, что сформулированная теорема и следствие из неё не указывают, как найти решение СЛАУ. С их помощью можно лишь выяснить, существуют эти решения или нет, а если существуют - то сколько.

Пример №1

Исследовать СЛАУ $ \left \{\begin{aligned} & -3x_1+9x_2-7x_3=17;\\ & -x_1+2x_2-4x_3=9;\\ & 4x_1-2x_2+19x_3=-42. \end{aligned}\right.$ на совместность. Если СЛАУ совместна, указать количество решений.

Чтобы выяснить наличие решений заданной СЛАУ, используем теорему Кронекера-Капелли. Нам понадобятся матрица системы $A$ и расширенная матрица системы $\widetilde{A}$, запишем их:

$$ A=\left(\begin{array} {ccc} -3 & 9 & -7 \\ -1 & 2 & -4 \\ 4 & -2 & 19 \end{array} \right);\; \widetilde{A}=\left(\begin{array} {ccc|c} -3 & 9 &-7 & 17 \\ -1 & 2 & -4 & 9\\ 4 & -2 & 19 & -42 \end{array} \right). $$

Нужно найти $\rang A$ и $\rang\widetilde{A}$. Для этого есть много способов, некоторые из которых перечислены в разделе "Ранг матрицы" . Обычно для исследования таких систем применяют два метода: "Вычисление ранга матрицы по определению" или "Вычисление ранга матрицы методом элементарных преобразований" .

Способ №1. Вычисление рангов по определению.

Согласно определению, ранг - это наивысший порядок миноров матрицы , среди которых есть хоть один, отличный от нуля. Обычно исследование начинают с миноров первого порядка, но здесь удобнее приступить сразу к вычислению минора третьего порядка матрицы $A$. Элементы минора третьего порядка находятся на пересечении трёх строк и трёх столбцов рассматриваемой матрицы. Так как матрица $A$ содержит всего 3 строки и 3 столбца, то минор третьего порядка матрицы $A$ - это определитель матрицы $A$, т.е. $\Delta A$. Для вычисления определителя применим формулу №2 из темы "Формулы для вычисления определителей второго и третьего порядков" :

$$ \Delta A=\left| \begin{array} {ccc} -3 & 9 & -7 \\ -1 & 2 & -4 \\ 4 & -2 & 19 \end{array} \right|=-21. $$

Итак, есть минор третьего порядка матрицы $A$, который не равен нулю. Минор четвёртого порядка составить невозможно, так как для него требуется 4 строки и 4 столбца, а в матрице $A$ всего 3 строки и 3 столбца. Итак, наивысший порядок миноров матрицы $A$, среди которых есть хотя бы один не равный нулю, равен 3. Следовательно, $\rang A=3$.

Нам требуется найти также и $\rang\widetilde{A}$. Давайте посмотрим на структуру матрицы $\widetilde{A}$. До черты в матрице $\widetilde{A}$ находятся элементы матрицы $A$, причём мы выяснили, что $\Delta A\neq 0$. Следовательно, у матрицы $\widetilde{A}$ есть минор третьего порядка, который не равен нулю. Миноров четвёртого порядка матрицы $\widetilde{A}$ составить мы не можем, поэтому делаем вывод: $\rang\widetilde{A}=3$.

Так как $\rang A=\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система совместна, т.е. имеет решение (хотя бы одно). Чтобы указать количество решений, учтём, что наша СЛАУ содержит 3 неизвестных: $x_1$, $x_2$ и $x_3$. Так как количество неизвестных $n=3$, то делаем вывод: $\rang A=\rang\widetilde{A}=n$, поэтому согласно следствия из теоремы Кронекера-Капелли, система является определённой, т.е. имеет единственное решение.

Задача решена. Какие недостатки и преимущества имеет данный способ? Для начала поговорим о плюсах. Во-первых, нам понадобилось найти всего один определитель. После этого мы сразу сделали вывод о количестве решений. Обычно в стандартных типовых расчётах даются системы уравнений, которые содержат три неизвестных и имеют единственное решение. Для таких систем данный метод очень даже удобен, ибо мы заранее знаем, что решение есть (иначе примера не было бы в типовом расчёте). Т.е. нам остаётся только показать наличие решения наиболее быстрым способом. Во-вторых, вычисленное значение определителя матрицы системы (т.е. $\Delta A$) пригодится после: когда станем решать заданную систему методом Крамера или с помощью обратной матрицы .

Однако метод вычисления ранга по определению нежелательно применять, если матрица системы $A$ является прямоугольной. В этом случае лучше применить второй метод, о котором пойдёт речь ниже. Кроме того, если $\Delta A=0$, то мы ничего не сможем сказать о количестве решений заданной неоднородной СЛАУ. Может, СЛАУ имеет бесконечное количество решений, а может - ни одного. Если $\Delta A=0$, то требуется дополнительное исследование, которое зачастую является громоздким.

Подводя итог сказанному, отмечу, что первый способ хорош для тех СЛАУ, у которых матрица системы квадратна. При этом сама СЛАУ содержит три или четыре неизвестных и взята из стандартных типовых расчетов или контрольных работ.

Способ №2. Вычисление ранга методом элементарных преобразований.

Подробно это метод описан в соответствующей теме . Мы станем вычислять ранг матрицы $\widetilde{A}$. Почему именно матрицы $\widetilde{A}$, а не $A$? Дело в том, что матрица $A$ является частью матрицы $\widetilde{A}$, поэтому вычисляя ранг матрицы $\widetilde{A}$ мы одновременно найдем и ранг матрицы $A$.

\begin{aligned} &\widetilde{A} =\left(\begin{array} {ccc|c} -3 & 9 &-7 & 17 \\ -1 & 2 & -4 & 9\\ 4 & -2 & 19 & -42 \end{array} \right) \rightarrow \left|\text{меняем местами первую и вторую строки}\right| \rightarrow \\ &\rightarrow \left(\begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ -3 & 9 &-7 & 17\\ 4 & -2 & 19 & -42 \end{array} \right) \begin{array} {l} \phantom{0} \\ r_2-3r_1\\ r_3+4r_1 \end{array} \rightarrow \left(\begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 6 & 3 & -6 \end{array} \right) \begin{array} {l} \phantom{0} \\ \phantom{0}\\ r_3-2r_2 \end{array}\rightarrow\\ &\rightarrow \left(\begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 0 & -7 & 14 \end{array} \right) \end{aligned}

Мы привели матрицу $\widetilde{A}$ к ступенчатому виду . Полученная ступенчатая матрица имеет три ненулевых строки, поэтому её ранг равен 3. Следовательно, и ранг матрицы $\widetilde{A}$ равен 3, т.е. $\rang\widetilde{A}=3$. Делая преобразования с элементами матрицы $\widetilde{A}$ мы одновременно преобразовывали и элементы матрицы $A$, расположенные до черты. Матрица $A$ также приведена к ступенчатому виду: $\left(\begin{array} {ccc} -1 & 2 & -4 \\ 0 & 3 &5 \\ 0 & 0 & -7 \end{array} \right)$. Вывод: ранг матрицы $A$ также равен 3, т.е. $\rang A=3$.

Так как $\rang A=\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система совместна, т.е. имеет решение. Чтобы указать количество решений, учтём, что наша СЛАУ содержит 3 неизвестных: $x_1$, $x_2$ и $x_3$. Так как количество неизвестных $n=3$, то делаем вывод: $\rang A=\rang\widetilde{A}=n$, поэтому согласно следствия из теоремы Кронекера-Капелли, система определена, т.е. имеет единственное решение.

Какие преимущества второго способа? Главное преимущество - это его универсальность. Нам совершенно неважно, является ли матрица системы квадратной или нет. Кроме того, мы фактически провели преобразования прямого хода метода Гаусса . Осталось лишь пару действий, и мы смогли бы получить решение данной СЛАУ. Честно говоря, второй способ нравится мне более первого, но выбор - это дело вкуса.

Ответ : Заданная СЛАУ совместна и определена.

Пример №2

Исследовать СЛАУ $ \left\{ \begin{aligned} & x_1-x_2+2x_3=-1;\\ & -x_1+2x_2-3x_3=3;\\ & 2x_1-x_2+3x_3=2;\\ & 3x_1-2x_2+5x_3=1;\\ & 2x_1-3x_2+5x_3=-4. \end{aligned} \right.$ на совместность.

Находить ранги матрицы системы и расширенной матрицы системы будем методом элементарных преобразований . Расширенная матрица системы: $\widetilde{A}=\left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ -1 & 2 & -3 & 3 \\ 2 & -1 & 3 & 2 \\ 3 & -2 & 5 & 1 \\ 2 & -3 & 5 & -4 \end{array} \right)$. Найдём требуемые ранги, преобразовывая расширенную матрицу системы:

$$ \left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ -1 & 2 & -3 & 3 \\ 2 & -3 & 5 & -4 \\ 3 & -2 & 5 & 1 \\ 2 & -1 & 3 & 2 \end{array} \right) \begin{array} {l} \phantom{0}\\r_2+r_1\\r_3-2r_1\\ r_4-3r_1\\r_5-2r_1\end{array}\rightarrow \left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ 0 & 1 & -1 & 2 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & -1 & 4 \\ 0 & 1 & -1 & 4 \end{array} \right) \begin{array} {l} \phantom{0}\\\phantom{0}\\r_3-r_2\\ r_4-r_2\\r_5+r_2\end{array}\rightarrow\\ $$ $$ \rightarrow\left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right) \begin{array} {l} \phantom{0}\\\phantom{0}\\\phantom{0}\\ r_4-r_3\\\phantom{0}\end{array}\rightarrow \left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) $$

Расширенная матрица системы приведена к ступенчатому виду . Ранг ступенчатой матрицы равен количеству её ненулевых строк, поэтому $\rang\widetilde{A}=3$. Матрица $A$ (до черты) тоже приведена к ступенчатому виду, и ранг её равен 2, $\rang{A}=2$.

Так как $\rang A\neq\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система несовместна (т.е. не имеет решений).

Ответ : система несовместна.

Пример №3

Исследовать СЛАУ $ \left\{ \begin{aligned} & 2x_1+7x_3-5x_4+11x_5=42;\\ & x_1-2x_2+3x_3+2x_5=17;\\ & -3x_1+9x_2-11x_3-7x_5=-64;\\ & -5x_1+17x_2-16x_3-5x_4-4x_5=-90;\\ & 7x_1-17x_2+23x_3+15x_5=132. \end{aligned} \right.$ на совместность.

Приводим расширенную матрицу системы к ступенчатому виду:

$$ \left(\begin{array}{ccccc|c} 2 & 0 & 7 & -5 & 11 & 42\\ 1 & -2 & 3 & 0 & 2 & 17 \\ -3 & 9 & -11 & 0 & -7 & -64 \\ -5 & 17 & -16 & -5 & -4 & -90 \\ 7 & -17 & 23 & 0 & 15 & 132 \end{array} \right) \overset{r_1\leftrightarrow{r_3}}{\rightarrow} $$ $$ \rightarrow\left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 2 & 0 & 7 & -5 & 11 & 42\\ -3 & 9 & -11 & 0 & -7 & -64\\ -5 & 17 & -16 & -5 & -4 & -90 \\ 7 & -17 & 23 & 0 & 15 & 132 \end{array} \right) \begin{array} {l} \phantom{0}\\ r_2-2r_1 \\r_3+3r_1 \\ r_4+5r_1 \\ r_5-7r_1 \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 0 & 4 & 1 & -5 & 7 & 8\\ 0 & 3 & -2 & 0 & -1 & -13\\ 0 & 7 & -1 & -5 & 6 & -5 \\ 0 & -3 & 2 & 0 & 1 & 13 \end{array} \right) \begin{array} {l} \phantom{0}\\ \phantom{0}\\4r_3+3r_2 \\ 4r_4-7r_2 \\ 4r_5+3r_2 \end{array} \rightarrow $$ $$ \rightarrow\left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 0 & 4 & 1 & -5 & 7 & 8\\ 0 & 0 & -11 & 15 & -25 & -76\\ 0 & 0 & -11 & 15 & -25 & -76 \\ 0 & 0 & 11 & -15 & 25 & 76 \end{array} \right) \begin{array} {l} \phantom{0}\\ \phantom{0}\\\phantom{0} \\ r_4-r_3 \\ r_5+r_2 \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 0 & 4 & 1 & -5 & 7 & 8\\ 0 & 0 & -11 & 15 & -25 & -76\\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) $$

Мы привели расширенную матрицу системы и саму матрицу системы к ступенчатому виду . Ранг расширенной матрицы системы равен трём, ранг матрицы системы также равен трём. Так как система содержит $n=5$ неизвестных, т.е. $\rang\widetilde{A}=\rang{A}\lt{n}$, то согласно следствия из теоремы Кронекера-Капелли данная система является неопределённой, т.е. имеет бесконечное количество решений.

Ответ : система является неопределённой.

Во второй части мы разберём примеры, которые нередко включают в типовые расчёты или контрольные работы по высшей математике: исследование на совместность и решение СЛАУ в зависимости от значений параметров, входящих в неё.