Перпендикулярные плоскости, условие перпендикулярности плоскостей. Перпендикулярность прямых в пространстве. Визуальный гид (2019) Справочный материал п теме перпендикулярность плоскостей

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Представление о плоскости в пространстве позволяет получить, к примеру, поверхность стола или стены. Однако, стол или стена имеют конечные размеры, а плоскость простирается за их границы в бесконечность.

Рассмотрим две пересекающиеся плоскости. При пересечении они образуют четыре двугранных угла с общим ребром.

Вспомним, что из себя представляет двугранный угол.

В реальности мы встречаемся с предметами, которые имеют форму двугранного угла: например, приоткрытая дверь или полураскрытая папка.

При пересечении двух плоскостей альфа и бета получим четыре двугранных угла. Пусть один из двугранных углов равен (фи), тогда второй равен (1800 -), третий, четвертый (1800-).

Рассмотрим случай, когда один из двугранных углов равен 900.

Тогда, все двугранные углы в этом случае равны по 900.

Введем определение перпендикулярных плоскостей:

Две плоскости называются перпендикулярными, если двугранный угол между ними равен 90°.

Угол между плоскостями сигма и эпсилон равен 90 градусов, значит плоскости перпендикулярны

Приведем примеры перпендикулярных плоскостей.

Стена и потолок.

Боковая стенка и крышка стола.

Сформулируем признак перпендикулярности двух плоскостей:

ТЕОРЕМА: Если одна их двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Докажем этот признак.

По условию известно что прямая АМ лежит в плоскости α, прямая АМ перпендикулярна плоскости β,

Доказать: плоскости α и β перпендикулярны.

Доказательство:

1) Плоскости α и β пересекаются по прямой АР, при этом АМ АР, так как АМ β по условию, то есть АМ перпендикулярна к любой прямой, лежащей в плоскости β.

2) Проведем в плоскости β прямую AТ перпендикулярную AР.

Получим угол ТAМ - линейный угол двугранного угла. Но угол ТAМ = 90°, так как МА β. Значит, α β.

Что и требовалось доказать.

Из признака перпендикулярности двух плоскостей имеем важное следствие:

СЛЕДСТВИЕ: Плоскость, перпендикулярная к прямой, по которой пересекаются две плоскости, перпендикулярна к каждой из этих плоскостей.

То есть: если α∩β=с и γ с, то γ α и γ β.

Докажем это следствие: если плоскость гамма перпендикулрна к прямой с то по признаку параллельностидвух плоскостей гамма перпендикулярна к альфа. Аналогично и гамма перпендикулярна бета

Указанное следствие переформулируем для двугранного угла:

Плоскость, проходящая через линейный угол двугранного угла перпендикулярна ребру и граням этого двугранного угла. Другими словами, если мы построили линейный угол двугранного угла, то проходящая через него плоскость перпендикулярна ребру и граням этого двугранного угла.

Дано: ΔАВС, С = 90°, АС лежит в плоскости α, угол между плоскостями α и ABC = 60°, АС = 5 см, АВ = 13 см.

Найти: расстояние от точки В до плоскости α.

1) Построим ВК α. Тогда КС - проекция ВС на эту плоскость.

2) ВС АС (по условию), значит, по теореме о трех перпендикулярах (ТТП), КС АС. Следовательно, ВСК - линейный угол двугранного угла между плоскостью α и плоскостью треугольника АВС. То есть ВСК = 60°.

3) Из ΔВСА по теореме Пифагора:

Ответ ВК равно 6 корней из трех см

Практическое использование (прикладной характер) перпендикулярности двух плоскостей.

Данная статья посвящена перпендикулярным плоскостям. Будут даны определения, обозначения вместе с примерами. Будет сформулирован признак перпендикулярности плоскостей и условие, при котором он выполним. Будут рассмотрены решения подобных задач на примерах.

Yandex.RTB R-A-339285-1

При наличии угла между пересекающимися прямыми можно говорить об определении перпендикулярных плоскостей.

Определение 1

При условии, что угол между перпендикулярными прямыми равен 90 градусов, их называют перпендикулярными.

Обозначение перпендикулярности принято писать знаком « ⊥ ». Если в условии дано, что плоскости α и β перпендикулярные, тогда запись принимает вид α ⊥ β . На рисунке ниже показано подробно.

Когда в улови дано, что плоскость α и β перпендикулярны, это значит, что α перпендикулярна β и наоборот. Такие плоскости называют взаимно перпендикулярными. Например, стена и потолок в комнате являются взаимно перпендикулярными, так как при пересечении дают прямой угол.

Перпендикулярность плоскостей – признак и условие перпендикулярности

На практике можно встретить задания, где необходимо определить перпендикулярность заданных плоскостей. Для начала нужно определить угол между ними. Если он равен 90 градусам, тогда они считаются перпендикулярными из определения.

Для доказательства перпендикулярности двух плоскостей применяют признак перпендикулярности двух плоскостей.Формулировка содержит понятия перпендикулярная прямая и плоскость. Напишем точное определение признака перпендикулярности в виде теоремы.

Теорема 1

Если одна из двух заданных плоскостей пересекает прямую, перпендикулярную другой плоскости, то заданные плоскости перпендикулярны.

Доказательство имеется в учебнике по геометрии за 10 - 11 класс, где есть подробное описание. Из признака следует, что, если плоскость перпендикулярна линии пересечения двух заданных плоскостей, то она перпендикулярна к каждой из этих плоскостей.

Существует необходимое и достаточное условия для доказательства. Рассмотрим их для перпендикулярности двух заданных плоскостей, которое применяется в качестве проверки их перпендикулярности, находящихся в прямоугольной системе координат трехмерного пространства. Чтобы доказательство имело силу, необходимо применить определение нормального вектора плоскости, который способствует доказать необходимое и достаточное условие перпендикулярности плоскостей.

Теорема 2

Для того, чтобы перпендикулярность пересекающихся плоскостей была явной, необходимо и достаточно, чтобы нормальные векторы заданных плоскостей пересекались под прямым углом.

Доказательство

Пусть в трехмерном пространстве задана прямоугольная система координат. Если имеем n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) , являющимися нормальными векторами заданных плоскостей α и β , то необходимым и достаточным условием перпендикулярности векторов n 1 → и n 2 → примет вид

n 1 → , n 2 → = 0 ⇔ A 1 · A 2 + B 1 · B 2 + C 1 · C 2 = 0

Отсюда получаем, что n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) - нормальные векторы заданных плоскостей, а для действительности перпендикулярности α и β необходимо и достаточно, чтобы скалярное произведение векторов n 1 → и n 2 → было равным нулю, а значит, принимало вид n 1 → , n 2 → = 0 ⇔ A 1 · A 2 + B 1 · B 2 + C 1 · C 2 = 0 .

Равенство выполнено.

Рассмотрим подробнее на примерах.

Пример 1

Определить перпендикулярность плоскостей, заданных в прямоугольной системе координат O x y z трехмерно пространства, заданного уравнениями x - 3 y - 4 = 0 и x 2 3 + y - 2 + z 4 5 = 1 ?

Решение

Для нахождения ответа на вопрос о перпендикулярности для начал необходимо найти координаты нормальных векторов заданных плоскостей, после чего можно будет выполнить проверку на перпендикулярность.

x - 3 y - 4 = 0 является общим уравнением плоскости, из которого можно сразу преобразовать координаты нормального вектора, равные n 1 → = (1 , - 3 , 0) .

Для определения координаты нормального вектора плоскости x 2 3 + y - 2 + z 4 5 = 1 перейдем от уравнения плоскости в отрезках к общему.

Тогда получим:

x 2 3 + y - 2 + z 4 5 ⇔ 3 2 x - 1 2 y + 5 4 z - 1 = 0

Тогда n 2 → = 3 2 , - 1 2 , 5 4 - это координаты нормального вектора плоскости x 2 3 + y - 2 + z 4 5 = 1 .

Перейдем к вычислению скалярного произведения векторов n 1 → = (1 , - 3 , 0) и n 2 → = 3 2 , - 1 2 , 5 4 .

Получим, что n 1 → , n 2 → = 1 · 3 2 + (- 3) · - 1 2 + 0 · 5 4 = 3 .

Видим, что оно не равно нулю, значит, что заданные векторы не перпендикулярны. Отсюда следует, что плоскости также не перпендикулярны. Условие не выполнено.

Ответ: плоскости не перпендикулярны.

Пример 2

Прямоугольная система координат O x y z имеет четыре точки с координатами A - 15 4 , - 7 8 , 1 , B 17 8 , 5 16 , 0 , C 0 , 0 , 3 7 , D - 1 , 0 , 0 . Проверить, перпендикулярны ли плоскости А В С и A B D .

Решение

Для начала необходимо рассчитать скалярное произведение векторов данных плоскостей. Если оно равно нулю, только в этом случае можно считать, что они перпендикулярны. Находим координаты нормальных векторов n 1 → и n 2 → плоскостей А В С и A B D .

Из заданных координат точек вычислим координаты векторов A B → , A C → , A D → . Получаем, что:

A B → = 47 8 , 19 16 , - 1 , A C → = 15 4 , 7 8 , - 4 7 , A D → = 11 4 , 7 8 , - 1 .

Нормальный вектор плоскости А В С является векторным произведением векторов A B → и A C → , а для A B D векторное произведение A B → и A D → . Отсюда получим, что

n 1 → = A B → × A C → = i → j → k → 47 8 19 16 - 1 15 4 7 8 - 4 7 = 11 56 · i → - 11 28 · j → + 11 16 · k → ⇔ n 1 → = 11 56 , - 11 28 , 11 16 n 2 → = A B → × A D → = i → j → k → 47 8 19 16 - 1 11 4 7 8 - 1 = - 5 16 · i → + 25 8 · j → + 15 8 · k → ⇔ n 2 → = - 5 16 , 25 8 , 15 8

Приступим к нахождению скалярного произведения n 1 → = 11 56 , - 11 28 , 11 16 и n 2 → = - 5 16 , 25 8 , 15 8 .

Получим: n 1 → , n 2 → = 11 56 · - 5 16 + - 11 28 · 25 8 + 11 16 · 15 8 = 0 .

Если оно равно нулю, значит векторы плоскостей А В С и A B D перпендикулярны, тогда и сами плоскости перпендикулярны.

Ответ: плоскости перпендикулярны.

Можно было подойти к решению иначе и задействовать уравнения плоскостей А В С и A B D . После нахождения координат нормальных векторов данных плоскостей можно было бы проверить на выполнимость условие перпендикулярности нормальных векторов плоскостей.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Тема урока: «Признак перпендикулярности двух плоскостей»

Тип урока: Урок изучения нового материала

Формируемые результаты:

Предметные: ввести понятие угла между плоскостями, познакомить учащихся с определением перпендикулярных плоскостей, признаком перпендикулярности двух плоскостей, формировать умение применять его при решении задач.

Личностные: развивать познавательный интерес к геометрии, формировать умение представлять результат своей деятельности.

Метапредметные: формировать умение ставить и формулировать для себя новые задачи в учебе и познавательной деятельности.

Планируемые результаты: учащийся научится применять новую теорему при решении несложных задач.

Оборудование: доска, готовые рисунки (слайд-фильм), модели, изготовленные учащимися и учителем, текст задачи на печатной основе.

Cлова Пойа Д.:

Подробнее во вложении

Скачать:


Предварительный просмотр:

Урок геометрии в 10 классе.

Тема урока: «Признак перпендикулярности двух плоскостей»

Тип урока: Урок изучения нового материала

Формируемые результаты:

Предметные: ввести понятие угла между плоскостями, познакомить учащихся с определением перпендикулярных плоскостей, признаком перпендикулярности двух плоскостей, формировать умение применять его при решении задач.

Личностные: развивать познавательный интерес к геометрии, формировать умение представлять результат своей деятельности.

Метапредметные: формировать умение ставить и формулировать для себя новые задачи в учебе и познавательной деятельности.

Планируемые результаты: учащийся научится применять новую теорему при решении несложных задач.

Оборудование: доска, готовые рисунки (слайд-фильм), модели, изготовленные учащимися и учителем, текст задачи на печатной основе.

Cлова Пойа Д.: «Нужно всеми средствами обучать искусству доказывать, не забывая при этом и об искусстве догадываться».

1. Оргмомент.

2. Проверка домашнего задания.

1)Ученик с моделью двугранного угла рассказывает, как образуется его линейный угол; дает определение градусной меры двугранного угла.

2) Задача №1. (Слайд 2) – по рисунку.

3) Задача №2. (Слайд 3) – по рисунку.

К этим задачам вернемся позже перед доказательством признака.

3. Актуализация знаний.

1) Рассказ ученика о пересекающихся плоскостях (используется модель).

2) Определение перпендикулярных плоскостей (использует модель), примеры.

Вернемся к домашним задачам. Было установлено, что в обоих случаях двугранные углы равны 90°, т.е. являются прямыми. Посмотрим, какие символы нужно вставить вместо точек и сделаем вывод о взаимном расположении плоскостей (слайд 4).

(AFC) FO (ADC)

(AFC) (ADC).

Выясним, можно ли без нахождения двугранного угла сделать вывод о перпендикулярности плоскостей?

Обратите внимание на связь (слайд 5):

(DCC₁) DD₁ (ABC) (DCC₁) (ABC) и

(AFC) FO (ADC) (AFC) (ADC)

Формулирование предположения учащимися.

4. Изучение нового материала.

1). Сообщение темы урока: «Признак перпендикулярности двух плоскостей».

2). Формулировка теоремы (учебник): «Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны» ; показ на модели.

3). Доказательство проводится по заранее заготовленному чертежу (рис.62).

Дано: α, β – плоскости; α АВ β; АВ ∩ β = А

Доказать: α β.

Доказательство: 1) α ∩ β = АС

2) АВ АС (?)

3) Построим АD β; АD АС

4) L BAD - ……….. , L BAD = …. ° (?)

5) L (α, β) = 90°, т.е. α β.

5. Первичное закрепление (ПЗ).

1). Решение задачи 1 на готовом чертеже (слайд 6).

Дано: DА

Доказать: (DАС)

2). Решение задачи 2 на готовом чертеже + у каждого заготовленный вырезанный ромб (слайд 7).

Дано: АВСД – ромб;

Перегибаем по диагонали:

ВО

Докажи: (АВС)

3). Задача 3. «Слепой» текст на печатной основе (слайды 8-9).

Дано: рисунок; двугранный угол ВАСД – прямой.

Найди: ВД

Самостоятельно. Проверка.

6. Итоги урока. Информация о домашнем задании.

Перпендикулярность плоскостей Определение. Две плоскости называются перпендикулярными, если линейный угол при ребре двугранного угла между этими плоскостями - прямой.
Признак перпендикулярности плоскостей. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
Доказательство. Пусть a и ? - две пересекающиеся плоскости, с - прямая их пересечения и а - прямая перпендикулярная плоскости ? и лежащая в плоскости a . А - точка пересечения прямых a и с. В плоскости ? из точки А восстановим перпендикуляр, и пусть это будет прямая b . Прямая а перпендикулярна плоскости ? , а значит она перпендикулярна и любой прямой в этой плоскости, то есть прямые b и с перпендикулярны. Угол между прямыми а и Ь - линейный плоскостями a и ? и равен он 90°, так как прямая а перпендикулярна прямой b (подоказанному).Поопределениюплоскости a и ? перпендикулярны.

Теорема 1 . Еслииз точки,принадлежащейодной из двух перпендикулярных плоскостей,провести перпендикуляр к другой плоскости, то это перпендикуляр полностью лежит в первой плоскости.
Доказательство. Пусть a и ? - перпендикулярные плоскости и с - прямая их пересечения, А - точка лежащаявплоскостиa и не принадлежащая прямой с. Пустьперпендикуляр к плоскости ? проведенный из точки А , не лежит в плоскости a , тогда точка С – основание этого перпендикуляра лежит в плоскости ? и не принадлежит прямой с. Из точки А опустим перпендикуляр АВ напрямую с. Прямая АВ перпендикулярна плоскости (использую теорему 2). Через прямую АВ и точку С проведем плоскость ? (прямая и точка определяют плоскость, причем только одну). Мы видим, что в плоскости ? из одной точки А на прямуюВС проведено два перпендикуляра, чего быть не может, значит прямая АС совпадает с прямой АВ, а прямая АВ в свою очередь полностью лежит в плоскости a .

Теорема 2 . Если в одной из двух перпендикулярных плоскостей провести перпендикуляр к их линии пересечения, то этот перпендикуляр будет перпендикулярен второй плоскости.
Доказательство. Пусть a и ? - две перпендикулярные плоскости, с - прямая их пересечения и а - прямая перпендикулярная прямой с и лежащая в плоскости a . А - точка пересечения прямых а и с. В плоскости ? из точки А восстановим перпендикуляр, и пусть это будет прямая b . Угол между прямыми а и b - линейный угол при ребре двугранного угла между плоскостями a и ? и равен он 90°, так как плоскости a и ? перпендикулярны. Прямая а перпендикулярна прямой b (по доказанному) и прямой с по условию. Значит прямая а перпендикулярна плоскости? (

Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то заданные плоскости перпендикулярны () (рис.28)

α – плоскость, в – перпендикулярная ей прямая, β – плоскость, проходящая через прямую в , и с – прямая, по которой пересекаются плоскости α и β.

Следствие. Если плоскость перпендикулярна к линии пересечения двух заданных плоскостей, то она перпендикулярна к каждой из этих плоскостей

Задача 1 . Доказать, что через любую точку прямой в пространстве можно провести две различные перпендикулярные ей прямые.

Доказательство:

По аксиоме I существует точка, не принадлежащая прямой а. По теореме 2.1через точку В и прямую а можно провести плоскость α. (рис.29) По теореме 2.3 через точку А в плоскости α можно провести прямую а. По аксиоме С 1 существует точка С , не принадлежащая α. По теореме 15.1 через точку С и прямую а можно провести плоскость β. В плоскости β по теореме 2.3 через точку а можно провести прямую с а. Прямые в и с по построению имеют только одну общую точку А и обе перпендикулярны


Задача 2. Верхние концы двух вертикально стоящих столбов, удаленных на расстояние3, 4 м, соединены перекладиной. Высота одного столба 5,8 м, а другого – 3,9 м. Найдите длину перекладины.

АС = 5,8м, ВD = 3,9 м, АВ - ? (рис.30)


АЕ = АС – СЕ = АС – ВD = 5,8 – 3,9 = 1,9 (м)

По теореме Пифагора из ∆ АЕВ получаем:

АВ 2 = АЕ 2 + ЕВ 2 = АЕ 2 + СD 2 = (1,9) 2 + (3,4) 2 = 15,17 (м 2)

АВ = = 3,9 (м)

Задачи

Цель . Учиться анализировать в простейших случаях взаимное расположение объектов в пространстве, использовать при решении стереометрических задач планиметрические факты и методы .


1. Докажите, что через любую точку прямой в пространстве можно провести перпендикулярную ей прямую.

2. Прямые АВ, АС и АD попарно перпендикулярны. Найти отрезок СД, если:

1) АВ = 3см, ВС = 7см, АD = 1,5 см;

2) ВД = 9 см, АD = 5cм, ВС = 16см;

3) АВ = в, ВС = а, АD =d;

4) ВD = с, ВС = а, АD = d

3. Точка А находится на расстоянии a от вершин равностороннего треугольника со стороной а. Найдите расстояние от точки А до плоскости треугольника.

4. Докажите, что если прямая параллельна плоскости, то все ее точки находятся на одинаковом расстоянии от плоскости.

5. Телефонная проволока длиной 15 м протянута от телефонного столба, где она прикреплена на высоте 8 м от поверхности земли, к дому, где ее прикрепили на высоте 20 м. Найдите расстояние между домом и столбом, полагая, что проволока не провисает.

6. Из точки к плоскости проведены две наклонные, равные 10 см и 17 см. Разность проекций этих наклонных равна 9 см. Найти проекции наклонных.


7. Из точки к плоскости проведены две наклонные, одна из которых на 26 см больше другой. Проекции наклонных равны 12 см и 40 см. Найдите наклонные.



8. Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если они относятся как 1:2 и проекции наклонных равны 1 см и 7 см.

9. Из точки к плоскости проведены две наклонные, равные 23 см и 33 см. Найдите

расстояние от этой точки до плоскости, если проекции наклонных относятся как 2:3.

10. Найдите расстояние от середины отрезка АВ до плоскости, не пересекающей этот отрезок, если расстояние от точек а и В до плоскости равны: 1) 3, 2 см и 5, 3 см;7, 4 см и 6, 1 см; 3) a и в.

11. Решите предыдущую задачу при условии, что отрезок АВ пересекает плоскость.

12. Отрезок длиной 1 м пересекает плоскость, концы его удалены от плоскости на расстояние 0,5 м и 0, 3 м. Найдите длину проекции отрезка на плоскость..

13. Из точек А и В опущены перпендикуляры на плоскость. Найдите расстояние между точками А и В, если перпендикуляры равны 3 м и 2 м, расстояние между их основаниями равно 2,4 м, а отрезок АВ не пересекает плоскость.

14. Из точек А и В, лежащих в двух перпендикулярных плоскостях, опущены перпендикуляры АС и ВD на прямую пересечения плоскостей. Найдите длину отрезка АВ, если:1) АС = 6 м, ВD = 7 м, СD = 6 м; 2) АС = 3 м, ВD = 4 м, СD = 12 м; 3) АD = 4 м, ВС = 7 м, СD = 1 м; 4) АD = ВС = 5 м, СD = 1 м; 4) АС = а, ВD = в, СD = с; 5) АD = а, ВС = в, СD = с.

15.Из вершин А и В равностороннего треугольника АВС восставлены перпендикуляры АА 1 и ВВ 1 к плоскости треугольника. Найдите расстояние от вершины С до середины отрезка А 1 В 1 , если АВ = 2 м, СА 1 = 3 м, СВ 1 = 7 м и отрезок А 1 В 1 не пересекает плоскость треугольника

16. Из вершин А и В острых углов прямоугольного треугольника АВС восставлены перпендикуляры АА 1 и ВВ 1 к плоскости треугольника. Найдите расстояние от вершины С до середины отрезка А 1 В 1 , если А 1 С = 4 м, АА 1 = 3 м, СВ 1 = 6 м, ВВ 1 = 2 м и отрезок А 1 В 1 не пересекает плоскость треугольника.